copley 🥬 Nano Module CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

[AFS] Advanced Feature Set

- 32-bit Floating Point Filters
- Multiple Advanced Filters
- Frequency Analysis Tools

Control Modes

controls

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- Camming, Gearing
- Command Interface
 - CANopen
 - ASCII, Serial Binary, and Discrete I/O
 - Stepper or Quad A/B Position Commands
 - PWM Velocity-Torque Command
 - Master Encoder (Gearing, Camming)
 - ±10 V Position-Velocity-Torque
- Communications
 - CANopen
 - RS-232

Feedback

- Primary Absolute **BiSS-C Unidirectional** SSI Absolute or Incremental
- Secondary Incremental Differential Quad A/B/X
- Dual Feedback
- Digital Halls

I/O

- 1 Analog Input ±10V, 12-bit
- 5 High-speed Digital Inputs
- 1 Motor Overtemp Input
- 4 High-speed Digital Outputs

Safe Torque Off

• SIL 3, Category 3, PL e

Dimensions, Weight

- NPS: 1.38 x 1.18 x 0.92 in [35 x 30 x 23.4 mm], 1.0 oz [29 g]
- NPS-Z: 1.38 x 1.85 x 1.32 in [35 x 47 x 33.6 mm], 2.0 oz [57 g]
- NPS-D: 3.82 x 4.42 x 1.77 in [97.1 x 112.4 x 45 mm], 7.8 oz [221 g]* *Note: Optional heatsink weight: 0.58 oz [16.5 g]

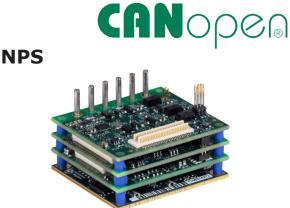
Model	Ic	IP	Vdc
NPS-090-10	5	10	9~90
NPS-090-70	35	70	9~90
NPS-180-10	5	10	20~180
NPS-180-30	15	30	20~180

-Z and -D have these ratings.

Note: Append -D for Module/Dev Board Assy [-D] Append -Z for Module/OEM Board Assy [-Z]

DESCRIPTION

Nano is the smallest servo drive that Copley offers and can be mounted directly on the motor or within the robotic joints. It can satisfy requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries. The NPS module may be implemented in a customer application using only connectors, or it can be used when the power pins may be soldered for high load current applications.



Note:

For NPS-090-70-D and NPS-180-30-D assemblies, heatsinks are installed at the factory. For NPS-090-10-D and NPS-180-10-D assemblies, heatsinks are not installed at the factory.

The NPS-Z is a small form factor available for immediate integration into a customer application used with industry standard connectors and a heat plate mounted to the frame. The NPS-D is a Development Kit used for prototyping.

/AFS/

/AFS/

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS

copley

controls

Test conditions: Load = Wve connected load: 1 mH+ 1 Ω line-line. Ambient temperature = 25 °C. +HV = HVr

MODEL	NPS-090-10 NPS-090-10-D NPS-090-10-Z	NPS-090-70 NPS-090-70-D NPS-090-70-Z	NPS-180-10 NPS-180-10-D NPS-180-10-Z	+HV = HVmax. NPS-180-30 NPS-180-30-D NPS-180-30-Z	
OUTPUT POWER					
Peak Current	10 (7.07)	*70 (49.5)	10 (7.07)	30 (21.2)	ADC (Arms, sinusoidal)
Peak Time	1	1	1	1	Sec
Continuous Current	5 (3.54)	*35 (24.8)	5 (3.54)	15 (10.6)	ADC (Arms, sinusoidal)
Peak Output Power	0.9	6.3	1.8	5.4	kW
Continuous Output Power	0.45	3.15	0.9	1.8	kW
·		*Note: NPS-09	0-70 must be solder	ed to a mounting	PCBA to meet this output.
NPUT POWER					
HVmin to HVmax	+9 to +90	+9 to +90	+20 to +180	+20 to +180	Vdc, transformer-isolated
Ipeak	10	70	10	30	ADC (1 sec) peak
Icont	5	35	5	15	ADC continuous
VLogic	+9 to +60	+9 to +60	+9 to +60	+9 to +60	Vdc, transformer-isolated
VLogic Power	3 W with no end	oder, 6 W with enco	der +5V @ 500 mA,	VLogic @ 24 Vdc	
WM OUTPUTS					
Туре	MOSFET 3-ph	ase inverter, 16 kHz	center-weighted PWI	1 carrier, space-ve	ector modulation
PWM Ripple Frequency	32 kHz				
ANDWIDTH					
Current Loop, Small Signal	2.5 kHz typica	al, bandwidth will var	y with tuning & load	inductance.	
HV Compensation		/ V do not affect bandv			
Current Loop Update Rate	16 kHz (62.5	μs)			
Position & Velocity Loop Update R	ate 4 kHz (250 µs	5)			
OMMAND INPUTS					
CANopen	CAN TJA1051	transceiver, ISO 118	98-2:2016 and SAE	J2284-1 to SAE J2	284-5 compliant
Signals		L, CAN_GND, 1 mBit			·
Data Protocol	CANopen Dev	ice Profile DSP-402 c	ver CANopen (CoE)		
Stand-Alone Mode					
Digital Position Reference	Pulse/Directio	n, CW/CCW Stepper	commands (2 MHz m	naximum rate)	
	Quad A/B Enc	oder 2 M line/	sec, 8 Mcount/sec (a	ifter quadrature)	
Digital Torque & Velocity					
Reference	PWM, Polarity)% - 100%, Polarity		
	PWM 50%		50% ±50%, no polar	, ,	
			mum, 100 kHz maxir	num	
• · ·		n pulse width: 220 n			
Indexing			ed from inputs or AS	CII commands.	
Camming		tables can be stored	,		
ASCII	RS-232, 9600	~230,400 Baud, 3-w	lire		
IGITAL INPUTS MODULE					
Number	6				
IN1~5	General purpo				
					2 Vdc, 10 k Ω pull-up to +5 Vdc
		,	6 Vdc max. negative		
IN6			drive on inputs and d		max. input voltage = +12 Vdc
1110					. negative threshold
IGITAL INPUTS NPS-D, NPS-Z	ייין זגא ככיד pul-t	γιο 15 Vuc, 2.2 Vu	e mini positive tilles		
	24.14.1				
IN1~3					compatible, 10 k Ω pull-up to +5 Ve
TNIA E			0.6 Vdc max. negativ		
IN4~5			,		2 Vdc, 10 k Ω pull-up to +5 Vdc
ING			6 Vdc max. negative		max input voltage - 12 Vde
IN6		Motor over-temperature, HC CMOS 5.0V Schmitt trigger, 330 μ S RC filter, max. input voltage = +12 Vdc 1.6 k Ω pull-up to +5 Vdc, 2.2 Vdc min. positive threshold, 0.6 Vdc max. negative threshold			
	110 K35 hall-af	, to 15 vuc, 2.2 vuc	mini positive tillesti		
IGITAL OUTPUTS MODULE	4				
Number	4 74UCT14 E V	CMOC Cabaratte tail	function - mark		
OUT1~4		55	er, functions program	,	
		w von = 4.18 vdC,	Sink 4 mA @ VOL =	0.20 VUC	
IGITAL OUTPUTS NPS-D, NPS-	<u> </u>				
Number	4				
OUT1~4			er, functions program	,	
	Source -4 mA	@ VOH = 4.18 Vdc,	Sink 4 mA @ VOL =	0.26 Vdc	
OUT4 (NPS-D)					/M duty-cycle for holding current.

copley **Nano** Module CANopen

/AFS/

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

ANALOG INPUT	
Number	1
Туре	Differential, ±10 Vdc range, 5.0 k Ω input impedance to a 12 bit ADC, single-pole low pass filter with a 14.5 kHz -3dB bandwidth
Function	Torque, Velocity, or Position command, or functions as a general purpose analog input.
SERIAL COMMUNICATION PORT	
Signals	RxD, TxD, SGND
	RxD input is 74LVC14 3.3 V Schmitt trigger with 10 k Ω pull-up to +5V
MI -	TxD output is 74HCT14 5 V Schmitt trigger
Mode Protocol	Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 bits/second ASCII or Binary format
Isolation	Non-isolated. Referenced to Signal Ground
SERIAL COMMUNICATION PORT,	•
,	s standard RS-232 signal levels. NPS-D accepts RJ11 cable.
All ADMITULE transcerver provide	NPS-Z requires an SER-USB-M or a cable terminated to a Molex 3 Pin to connect to the Serial port.
Signals	RxD, TxD, SGND
CANOPEN PORT	
Format	CAN_H, CAN_L, CAN_GND, 1 Mbit/sec maximum
Protocol	CANopen, CiA 402
Isolation	Galvanically isolated from drive circuits
MOTOR CONNECTIONS	
Motor U,V,W	Drive outputs to 3-phase brushless motor, Wye or delta connected for DC brush motor use outputs U & V.
	Minimum inductance: 200 µH line-line
Encoder	Digital encoders, incremental and absolute (See FEEDBACK below).
Halls	Digital U/V/W
Motemp	Input is programmable to disable the drive if motor sensor drives input HI or LO.
FEEDBACK Incremental Encoders:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).
	RS-422 line receivers, 5 MHz maximum line frequency (20 M counts/sec), 74HCT thresholds
Absolute Encoders:	
BiSS-C Unidirectional, SSI	MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder
Terminators	All encoder data inputs and clock outputs are differential and require external terminators.
Commutation:	Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc
HALLS	
U, V, W:	Single-ended, 120° electrical phase difference
	Schmitt trigger, 1.0 μ s RC filter from active HI/LO sources, 5 Vdc compatible
	15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds
+5V OUTPUT	
Number	1
Rating	150 mA maximum. Protected for overload or shorts.
	Available for optional peripherals immediately adjacent to the module.
+3.3V OUTPUT	
Number	3 150 mA maximum. Distanted for everland or shorts
Rating	150 mA maximum. Protected for overload or shorts. Available for optional microcontroller, RS-232 Transceiver, CANopen Tranceiver, LEDs, and Address Switches
+5VENC OUTPUT	
Number	2 Define 200 at Americal 500 at American District of family and and all state
	Rating 250 mA nominal, 500 mA maximum. Protected for overload and shorts. Note: The maximum total current for both outputs combined is 500 mA.
	Note. The maximum total current for both outputs combined is 500 mA.

/AFS/

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

SAFE TORQUE OFF (STO)			
Function	PWM outputs are inactive and the current to the motor will not be possible when the STO function is active.		
Safety Integrity Level	SIL 3, Category 3, Performance Level e (PL e)		
Inputs	2 two-terminal: STO1 IN, STO1 RTN, STO2 IN, STO2 RTN		
Туре	Opto-isolators, 5V compatible		
Disabling	Connecting both STO inputs to +5V will deactivate the STO function.		
PROTECTIONS			
HV Overvoltage	+HV > +95 ±1 Vdc Drive outputs turn OFF until +HV is < +95 ±1 Vdc (90 V model).		
	+HV > +185 ± 1 Vdc Drive outputs turn OFF until +HV is < +185 ± 1 Vdc (180 V models).		
HV Undervoltage	+HV < +9.0 \pm 0.5 Vdc Drive outputs turn OFF until +HV > +9.0 Vdc \pm 0.5 Vdc (90 V models).		
-	+HV < ± 0.5 Vdc Drive outputs turn OFF until $\pm HV > \pm 20.0$ Vdc ± 0.5 Vdc (180 V models).		
Drive Over-Temperature	PC Board > 90 °C +3/-0 °C Programmable as latching or temporary fault		
Short Circuits	Output to output, output to ground, internal PWM bridge faults		
I ² T Current Limiting	Programmable: continuous current, peak current, peak time for drive and motor		
Latching / Non-Latching	Programmable response to errors		
MECHANICAL & ENVIRONMEN	TAL		
Size, Weight	NPS: 1.38 x 1.18 x 0.92 in [35 x 30 x 23.4 mm], 1.0 oz [29 g]		
	NPS-Z: 1.38 x 1.85 x 1.32 in [35 x 47 x 33.6 mm], 2.0 oz [57 g]		
	NPS-D: 3.82 x 4.42 x 1.77 in [97.1 x 112.4 x 45 mm], 7.8 oz [221 g]*		
	*Note 1: Add 0.58 oz [0.0165 kg] for the optional heatsink.		
	Note 2: For NPS-090-70-D and NPS-180-30-D assemblies, the heatsinks are installed at the factory.		
	For NPS-090-10, NPS-090-10-D, NPS-180-10 and NPS-180-10-D assemblies, the heatsinks are optional.		
Weight	0.8 oz [0.023 kg]		
Ambient Temperature	0 to +45 °C operating, -40 to +85 °C storage		
Humidity Altitude	0 to 95%, non-condensing ≤ 2000 m (6,562 ft)		
Vibration	$2 \text{ g peak, } 10{\sim}502 \text{ Hz}$ (Sine)		
Shock	10 g, 10 ms, ½ Sine pulse		
Contaminants	Pollution Degree 2		
AGENCY STANDARDS CONFOR			
Standards and Directives			
Functional Safety			
	08-2, IEC 61508-3, (SIL 3)		
Directive 2006/42/EC			
ISO 13849-1 (Cat 3, P			
IEC 61800-5-2 (SIL 3	FUNCTIONAL		
Product Safety	SAFETY ISO 13849-1		
Directive 2014/35/EU			
IEC 61800-5-1	(Low Voltage) Up to PL e (Cat.3) IEC 61800-5-2		
EMC	Up to SIL 3		
Directive 2014/30/EU	(EMC)		
IEC 61800-3			
IEC 61800-5-2			
Restriction of the Use of Certain			
	and its amendments 2015/863/EU		
Approvals UL Recognized Component			
III Kecoanizea Lomnonent			
UL 61800-5-1, UL 618 IEC 61800-5-1, IEC 61			

Refer to the Copley, NANO User Guide, Part Number 16-121699.

The information provided in the Copley, NANO User Guide, Part Number 16-121699, must be considered for any application using the NANO drive STO feature. *Failure to heed this warning can cause equipment damage, injury, or death.*

Pins

36

38

34

SGND

CANOPEN COMMUNICATIONS

CANOPEN

controls

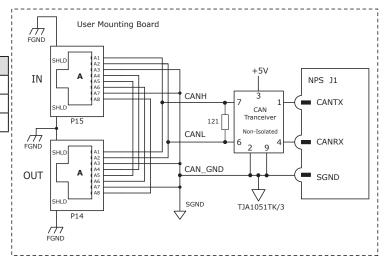
copley

CANopen is based on the CAN V2.0b physical layer, a robust, twowire communication bus originally designed for automotive use, where low-cost and noise-immunity are essential. CANopen adds support for motion-control devices and command

CANOPEN COMMUNICATION

NPS uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on

CANOPEN COMMAND INPUTS


In the diagram, it shows the connections between the NPS and RJ-45 connectors on the user mounting board.

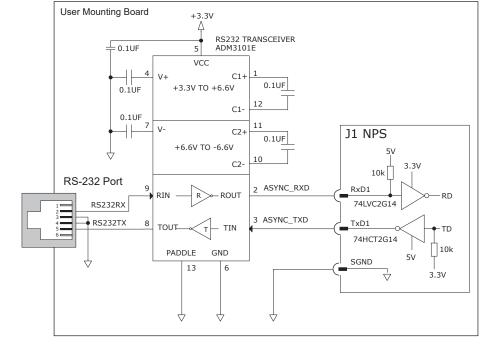
- If the NPS is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown.
 CANTX
 CANTX
- If there are multiple NPS on the user mounting PCB, then the terminating resistor should be near the NPS that is farthest from the CAN network connection to the PCB.

The node Node-ID of the NPS may be set by using the digital inputs or programmed into the flash memory in the drive. synchronization. The result provides a highly effective combination of data-rate and low-cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

/AFS/

a single CAN bus. Up to six digital inputs can be used to produce CAN Node-IDs from $1\sim63$, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

RS-232 COMMUNICATIONS


The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud. Using the CME software, it can be programmed for drive configuration and setup or programmed for the external equipment sending the ASCII commands.

In the diagram, the circuit shown is used on the -D and -Z boards. It is recommended for user's PC boards. It converts the single-ended TTL signals levels in the NPS into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

SignalPinsRxD130TxD132SGND34

RS-232 PORT

Signal	Pins
RS232RX	2
RS232TX	5
SGND	3,4

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware or the associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the ON/OFF state of the PWM outputs to produce torque in the motor.

INSTALLATION

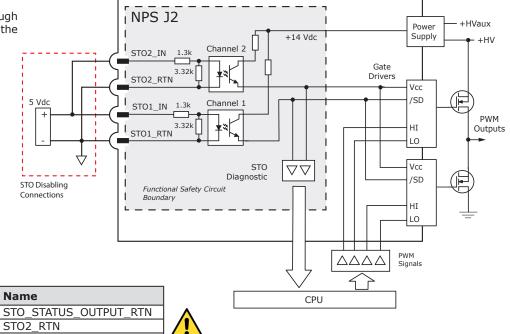
copley

controls

Refer to the Copley, NANO User Guide, Part Number 16-121699. The information provided in the Copley, NANO User Guide, Part Number 16-121699, must be considered for any application using the drive's STO feature. FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

Nano Module CANopen

STO DISABLE


must be flowing through the opto-couplers that are connected to the STO1_IN and STO2_IN terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

In order for the PWM outputs of the NPS to be activated, the current In the diagram, it shows the connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

Note: The current must flow through both of the opto-couplers before the drive can be enabled.

FUNCTIONAL DIAGRAM

J2 STO

	Name	in	Р	Name
	STO_STATUS_OUTPUT_RTN	5	6	STO_STATUS_OUTPUT
	STO2_RTN	3	4	STO2_IN
_	STO1_RTN	1	2	STO1_IN

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.

STO OPERATION

STO Input Voltage	STO State	
STO1_IN AND STO2_IN ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO1_IN OR STO2_IN \leq 0.8 Vdc	- STO Active. Drive cannot be enabled to produce torque.	
STO1_IN OR STO2_IN Open		
Note: Voltages are referenced between STOx_IN and STOx_RTN in J2.		

For example, V(STO1) = V(STO1 IN) - V(STO1 RTN)

copley 🥬 Nano Module CANopen

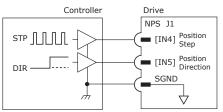
DIGITAL COMMAND INPUTS: POSITION

STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

NPS works with motion controllers that output pulses to command Position.

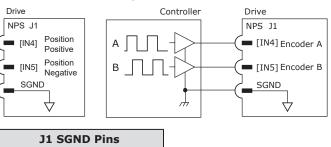
- The following formats are supported:
- Step/Direction

controls


- In Step/Direction mode, a pulse-train controls motor Position, and the Direction is controlled by a DC level at the Direction input. Count-Up/Count-Down (CU/CD)
- In the CU/CD (Count-Up/Count-Down) mode, the signals command the motor to move CW or CCW depending on to which input the pulse-train is directed.
- A/B Quadrature Encoder

In the A/B Quadrature Encoder mode, the motor can also be operated in an electronic gearing mode by connecting the inputs to a quadrature encoder on another motor.

In all cases, the ratio between input pulses and motor revolutions is programmable.


CU

STEP/DIRECTION INPUTS

OUAD A/B ENCODER INPUTS

3,4,11,12,33,34,49,50

AFS

Command Options	Signal	J1 Pins
Step, Count Up, Encoder A	IN4	8
Direction, Count Down, Encoder B	IN5	9

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE

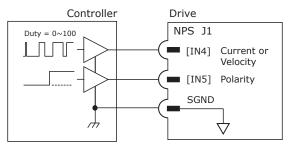
STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

NPS works with motion controllers that output pulses to command Velocity or Torque.

The following formats are supported:

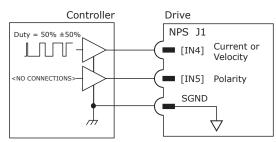
Pulse/Direction

In Pulse/Direction mode, a pulse-train with variable duty cycle on IN4 controls Velocity or Torque from 0~100%.


IN5 HI or LO controls the direction of the Velocity or polarity of the Torque.

PWM 50%

In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.


- -Increasing the duty cycle to 100% commands positive Velocity/Torgue.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Signal	J1 Pins
PWM Vel/Trk, PWM Vel/Trk & Direction	IN4	8
PWM/Dir Polarity, (none)	IN5	9

50% PWM

/AFS/

INPUT TRANSITION FUNCTIONS

• Count Input Edges, Save to Register

• Abort Move if > N Counts From Destination in Register

Simulated Absolute Encoder Burst

• Clear Faults and Event Latch

• High-Speed Position Capture

 Drive Reset • PWM Sync Input

Trajectory Update

5

6

7

8

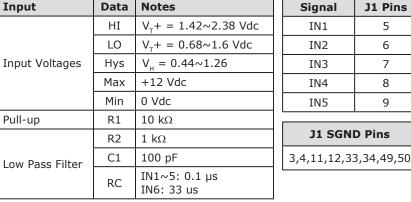
9

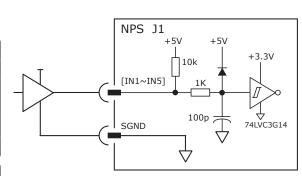
HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5

The six digital inputs to the NPS are programmable to a selection of functions. All have 100 ns RC filters when driven by active sources (CMOS, TTL, etc.) and all have 10 k Ω pull-up resistors to +5 Vdc. In addition to the selection of functions, the active level for each input is individually programmable. Input level functions have programmable HI or LO to activate the function.

Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT LEVEL FUNCTIONS


- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync


controls

- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide

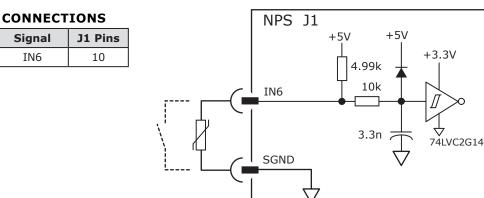
SPECIFICATIONS

CONNECTIONS **J1** Pins

WARNING

Consult Factory for Adapting 24V logic to 5V logic.

5V logic. Do not exceed 12V. Do not connect a 24V logic to this input.


MOTOR OVERTEMP INPUT: IN6

Input IN6 has a 33 microsecond rise time RC filter when driven by active sources (CMOS,TTL, etc), with a 4.99 k Ω pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard

Signal

IN6

PTC thermistor IAW BS 49990111(1987) used for built-in thermal protection of the motor as a default. If it is not used for the Motemp function, IN6 can be re-programmed for other input functions.

ANALOG INPUT: AIN1

As a reference input, it takes Position/Velocity/Torque commands from a controller.

If it is not used as a command input, it can be used as a generalpurpose analog input.

/AFS/

SPECIFICATIONS

copley

controls

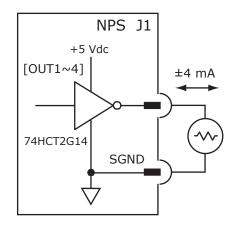
Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	J1 Pins
Ref(+)	2
Ref(-)	1

D/A FGND +10V Ref(+) SGND 1.5V

DIGITAL OUTPUTS: OUT1~OUT4

Digital outputs [OUT1~4] are CMOS inverters. They operate from +5V and can source/sink ± 4 mAdc.


OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-triggered Output
- Program Control
- Brake Control (see Brake Output: OUT4)

Signal	J1 Pins
OUT1	13
OUT2	14
OUT3	15
OUT4	16

J1 SGND Pins
3,4,11,12,33,34,49,50

In the diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when active.

BRAKE OUTPUT: OUT4

• Motor holding brake when NPS is

Same functions as OUT1~OUT3

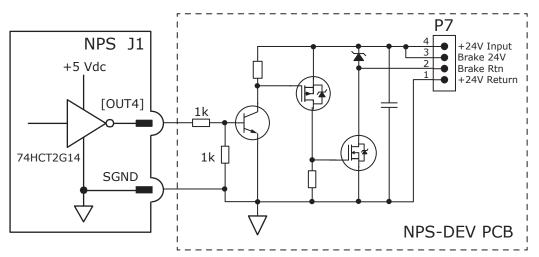
if the drive is used without a

J1 Pins

16

OUTPUT FUNCTION

mounted to a DEV PCB.

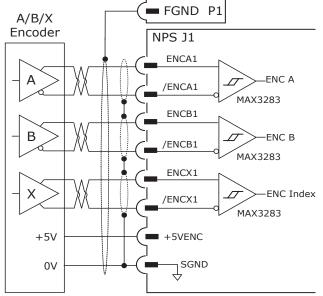

DEV PCB.

Signal

OUT4

The default function of OUT4 is used to control a motor holding brake using the NPS-D board that has components to sink the

higher current of the brake. If it is not used for the brake control, it can be programmed as a logic output.

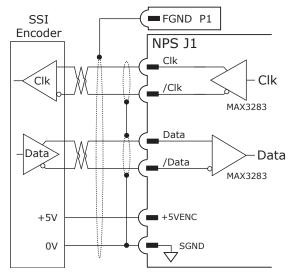


copley I Nano Module CANopen

ENCODER 1 (PRIMARY FEEDBACK)

QUAD ENCODER WITH INDEX

controls



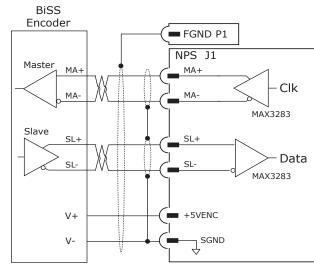
A/B/X SIGNALS

, , : : : : : : : : : : : : : : : : : :							
Signal	J1 Pins						
ENCA1	43						
/ENCA1	44						
ENCB1	45						
/ENCB1	46						
ENCX1	47						
/ENCX1	48						
+5VENC	57,59						
J1 SGND Pins							
3,4,11,12,33,34,49,50							
FRAME GROUND							
P1							

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or a control system. The NPS drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI, BISS SIGNALS


SSI	BiSS	J1 Pins
Clk	MA+	47
/Clk	MA-	48
Data SL+		43
/Data SL-		44
+!	5V	57,59

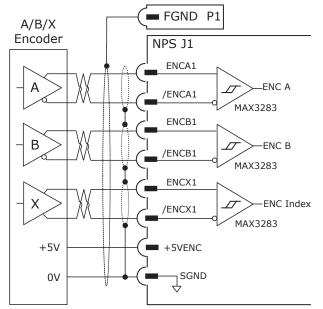
BISS-C ABSOLUTE ENCODER

BiSS-C is an - Open Source - digital interface used for sensors and actuators. BiSS-C refers to principles that comply with industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

/AFS/

- Serial Synchronous Data Communication •
- Cyclic at high speed
- 2 Unidirectional Lines Clock and Data •
- -Line delay compensation for high speed data transfer -Request for data generation at slaves
- -Safety capable: CRC, Errors, Warnings
- -Bus capability including actuators
- Bidirectional
 - -BiSS C-protocol: Continuous mode

Note: Single (outer) shields should be connected at the drive end. Inner shields should only be connected to Signal Ground on the drive.


copley **Nano** Module CANopen

ENCODER 2: SECONDARY FEEDBACK

QUAD ENCODER WITH INDEX

controls

A/B/X SIGNALS

Signal	J1 Pins				
ENCA2	51				
/ENCA2	52				
ENCB2	53				
/ENCB2	54				
ENCX2	55				
/ENCX2	56				
+5VENC	57,59				

J1 SGND Pins

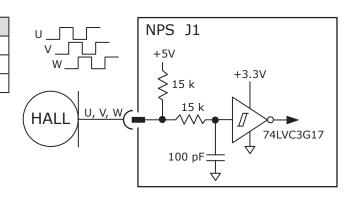
3,4,11,12,33,34,49,50

FRAME GROUND

Ρ1

Note: The Secondary Encoder supports only A/B/X Incremental Encoders.

/AFS/


OTHER MOTOR CONNECTIONS

HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without an encoder. When the sensors are used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

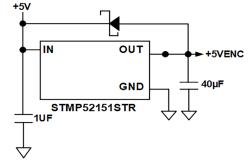
HALL SIGNALS

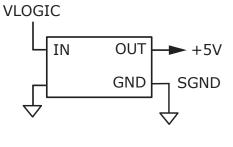
Signal	J1 Pins
HALLU	39
HALLV	40
HALLW	41

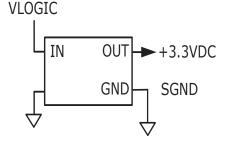
DC OUTPUT VOLTAGES

+5VENC

This voltage is used for encoders and it has an internal fault protection. The maximum current output is 500 mA shared between encoders. Current limiting occurs at 600 mA minimum, 1.0 A maximum.


+5V


This voltage is used for optional peripherals that are immediately adjacent to the module and it has an internal fault protection. The maximum current output is 150 mA.


+3.3 VDC

This voltage is used for the following connections that are immediately adjacent to the module:

- Microcontroller
- RS-232 Transceiver
- CAN Transceiver
- LEDs and Address Switches
- 150 mA maximum
- · Protected for overload or shorts

/AFS/

+HV CONNECTIONS

POWER SUPPLIES

copley

controls

The drive main power, +HV, is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV supply connects to P5 and P6.

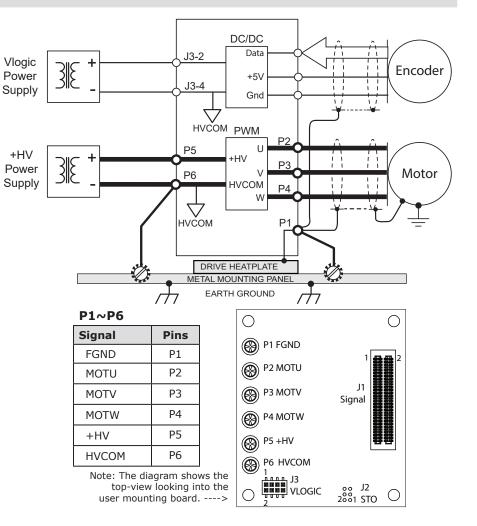
To comply with the wiring practices, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. By following the wiring guidelines, it ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise.

During deceleration, the mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop. While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply.

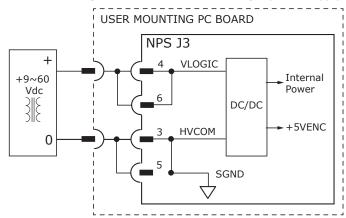
Use an external storage capacitor if the load has appreciable inertia. This should be sized, so that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and Gnd terminals.

GROUNDING

A P6 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. Grounding at P1 provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.


VLOGIC CONNECTIONS

DESCRIPTION


VLogic is required for the operation of the drive. It powers the internal logic and control circuits. Encoder +5V is derived from VLogic. When the STO feature is used, VLogic must be produced by power supplies with a transformer isolation from the mains

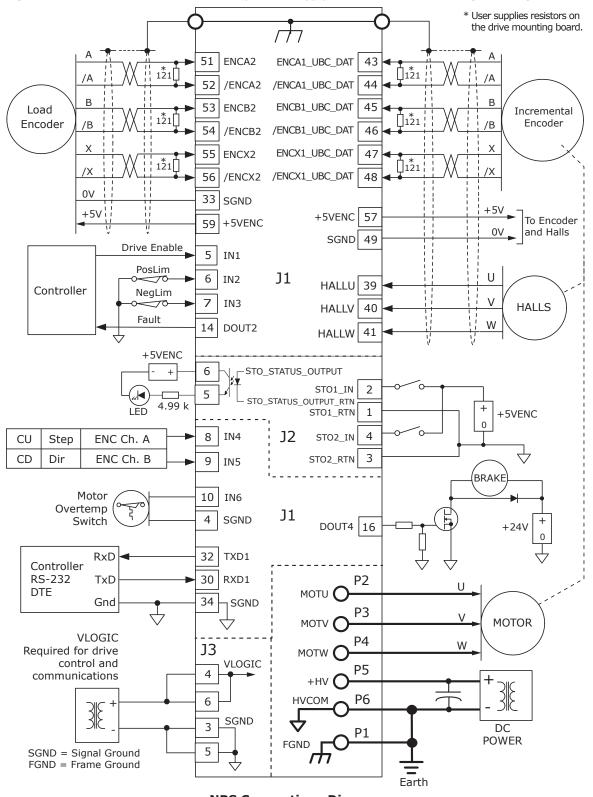
J3 VLOGIC

JUTEOUIC							
Name	P	in	Name				
N.C.	2 1		N.C.				
VLOGIC	4	3	HVCOM				
VLOGIC	6	5	HVCOM				
N.C.	8	7	N.C.				

and PELV or SELV ratings, and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If a 24V Brake is used, 24V is required. If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.



NPS TYPICAL CONNECTIONS

copley

The following diagram shows the NPS connections.

Note: In the diagram, the asterisk indicates the user is required to supply the resistors on the driving mounting PC board.

NPS Connections Diagram

copley **Nano** Module CANopen

Signal

SGND

IN2

IN4

IN6

SGND

DOUT2

SGND

N.C.

N.C.

N.C.

N.C.

SGND

SGND

CANTX

CANRX

HALLV

+3.3V

/ENCB1

SGND

/ENCA2

/ENCB2

/ENCX2

+5V

+3.3V

ASYNC_RXD1

ASYNC_TXD1

/ENCA1_UBC_DAT

/ENCX1_UBC_CLK

DOUT4 [BRAKE]

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

Note: In the table, the term, N.C., refers to No

Connection.

REFIN1+

/AFS/


J1 SIGNAL

PC BOARD CONNECTIONS

The following diagrams and tables show the pins and signals located on the topside of the user mounting PC board.

Signal	Pin
FGND	P1
Mot U	P2
Mot V	Р3
Mot W	P4
+HV	P5
HVCOM	P6

controls

J3 VLOGIC

Name	Pin		Name
N.C.	2	1	N.C.
VLOGIC	4	3	нусом
	6	5	п∨сом
N.C.	8	7	N.C.

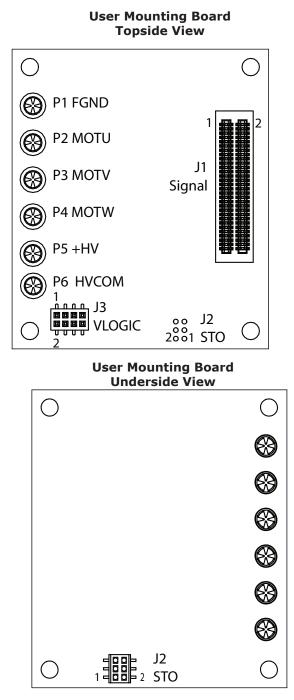
J2 STO

Name	Pin		Name	
STO_STATUS_OUTPUT	6	5	STO_STATUS_OUTPUT_RTN]
STO2_IN	4	3	STO2_RTN]
STO1_IN	2	1	STO1_RTN	

Note: The STO Connector J2 is mounted on the bottom side of the PCB.

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.



/AFS/

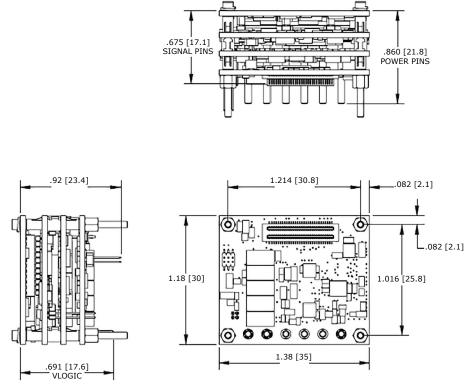
PC BOARD CONNECTORS

copley 🌈

controls

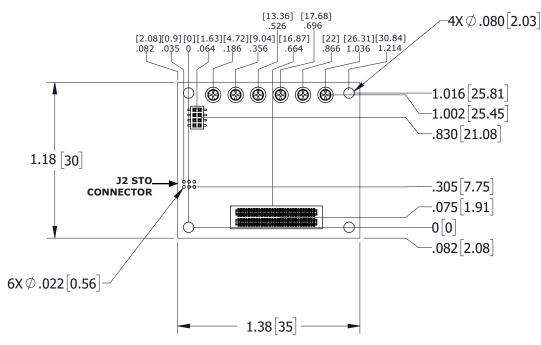
Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	N 3620-S060-022G3R02 Header, 60 pos, 0.5 mm pitch		1
J2	STO Samtec CLM-103-02-L-D-BE		Header, 6 pos, 1 mm pitch	1	
J3	VLOGIC	WCON	2521-204MG3CUNR1 Header, 8 pos, 1 mm pitch		1
P1~P6	+HV, Motor	WINPIN	WP-WJ018G3R1	RCPTL Outer Sleeve Crown Spring	6

*Note: The Part Number column indicates the parts that require the purchase of reels for these components. Refer to the following vendor to contact for approved value-added partner Action Electronics.


Action Electronics, Inc. Walpole, MA 02081-2522-US Phone: (508) 668-5621

DIMENSIONS

The following diagram shows the NPS dimensions.


Nano Module CANopen

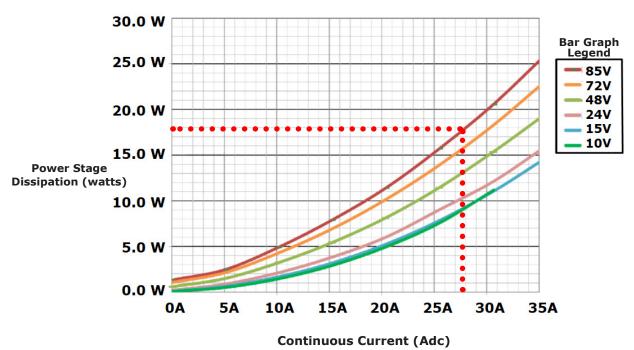
NPS Diagram (dimensions are in inches [mm])

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the topside view of the user mounting PC board for the drive. The STO J2 connector is

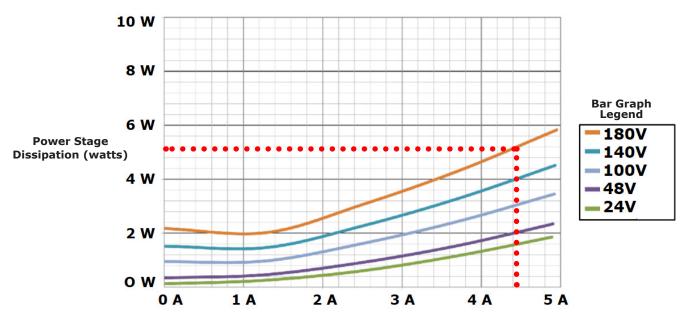
mounted on the underside of the PC board. The topside view shows the clearance holes for the STO connector mating pins.

User Mounting Board Dimensions (Topside View) Diagram



THERMALS: PWM OUTPUTS DISSIPATION

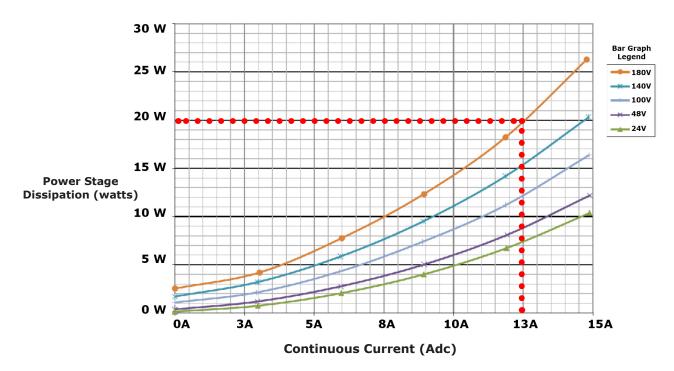
NPS-090-70


The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.

In the chart, the dotted lines show a dissipation of 18 W. at a continuous current of 28 Adc and +HV = 85 Vdc.

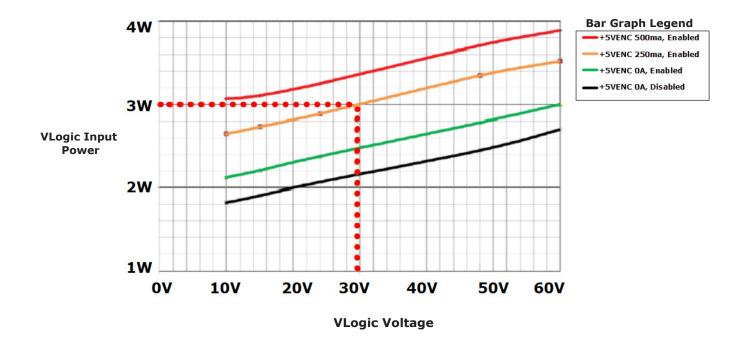
NPS-180-10

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 5.2 W. at a continuous current of 4.4 Adc and +HV = 180 Vdc.


Continuous Current (Adc)

THERMALS: VLOGIC & ENCODER +5V OUTPUT DISSIPATION

NPS-180-30


The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 20 W. at a continuous current of 13 Adc and $+\rm HV$ = 180 Vdc.

NPS All Models

The following chart shows the power dissipation in the VLogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.

In the chart, the dotted lines show a dissipation of 3.0 W. at VLogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

THERMAL RESISTANCE

In the Heatsink table, it shows the thermal resistance Rth in degrees-C per Watt (C/W) for typical cooling configurations. The drive has the standard "pins" heatsink mounted with a sheet of thermal material placed between the drive and the heatsink.

The acronym, LFM, is Linear Feet per Minute. LFM is defined as the velocity of air flow produced by a fan directed in line with the heatsink fins.

HEATSINK

copley

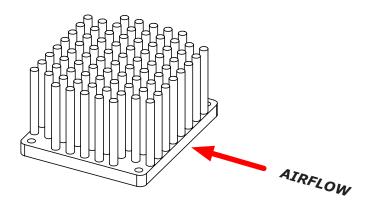
controls

LFM	0	100	200	300	400
Rth	5.3	3	2.5	1.6	1.3

FIND COOLING MEANS WITH DISSIPATION AND AMBIENT TEMPERATURE KNOWN

Nano Module CANopen

- Given: Tamb = 32 °C (89.6 °F), PWM dissipation = 18 W, VLogic dissipation = 3 W Tmax = 80 °C (drive shut-down temperature minus 10 °C for margin)
- Find: Thermal Resistance Rth: Delta-T = Tmax - Tamb = 80 - 32 = 48 °C Total dissipation = 18 + 3 = 21 W Rth = Delta-T / dissipation = °C / Watt = 48 / 21 = 2.3 °C/W
- In the above table, there are two configurations that provide Rth less than 2.3 °C/W: With heatsink, forced air at 300 or 400 LFM.


FIND MAX AMBIENT TEMP WHEN DRIVE CONFIGURATION IS KNOWN

Given: Heatsink, forced-air at 300 LFM, dissipation is 26.5 W

Rth = 1.6 °C/WTmax = 80 °C (drive shut-down temperature)

Find: Max. ambient operating temperature Delta-T = $26.5 \text{ W} \times 0.9 \text{ °C/W} = 23.9 \text{ °C}$

Max. Tamb = Tmax - Delta-T = 80 - 23.9 = 56.1 °CMax. ambient operating temperature is 45 °C so it can operate up to this temperature.

Airflow Direction

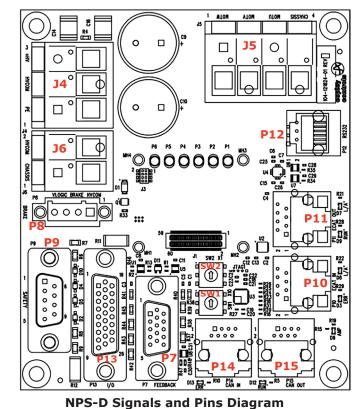
controls

copley **Nano** Module CANopen /AFS/

NPS-D

Model	Ic	Ιp	Vdc
NPS-090-10-D	5	10	9~90
NPS-090-70-D	35	70	9~90
NPS-180-10-D	5	10	20~180
NPS-180-30-D	15	30	20~180

J4 +HV


Signal	Pin
+HV	3
HVCOM	2
PE	1

J6 GROUNDS

Signal	Pin
HVCOM	2
FGND	1

P8 BRAKE

Signal	Pin
24V_GND_IN	1
BRAKE	2
VLOGIC	3
VLOGIC	4

J5 MOTOR			P12	RS-232
Pin	Signal		Pin	Signal
1	MOTW		6	N.C.
2	MOTV		5	TxD
3	MOTU		4	SGND
4	FGND		3	SGND
			2	RxD
			1	N.C.

P14 CAN

Pin	Signal	Pin	Signal
1	CANH	1	CANH
2	CANL	2	CANL
3	SGND	3	SGND
4	*	4	*
5	*	5	*
6	*	6	*
7	SGND	7	SGND
8	*	8	*

P15 CAN

*Note: In the Signal column, these pins feed-through between P14 & P15. They have no internal connections.

P9 STO

Signal	Pin		Signal
FGND	1 6		STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_OUTPUT_RTN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC +24V
STO2_RTN	5		

P13 I/O & ENCODER 2

Pin	Signal		Pin	Signal	Pin	Signal
1	FGND		10	IN5	19	SGND
2	REFIN1-		11	N.C.	20	+5VENC
3	REFIN1+		12	N.C.	21	/ENCX2
4	IN1_24VTOL	[13	N.C.	22	ENCX2
5	IN2_24VTOL		14	N.C.	23	/ENCB2
6	IN3_24VTOL		15	SGND	24	ENCB2
7	IN4		16	DOUT1	25	/ENCA2
8	N.C.	$ \Gamma$	17	DOUT2	26	ENCA2
9	N.C.	[18	DOUT3		

P7 ENCODER 1

Pin	Signal	Pin	Signal	Pin	Signal
1	FGND	6	HALLV	11	/ENCB1
2	+5VENC	7	/ENCX1_UBC_CLK	12	ENCB1
3	HALLU	8	ENCX1_UBC_CLK	13	/ENCA1_UBC_DAT
4	+5VENC	9	HALLW	14	ENCA1_UBC_DAT
5	SGND	10	OVERTEMP_IN	15	SGND

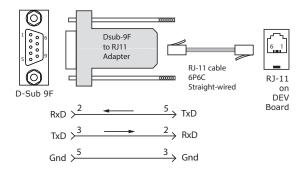
NPS-D CAN CONNECTORS

CANOPEN CONNECTORS

copley

controls

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface.


P14-P15 CAN CONNECTORS

P14	CAN	_	P15	CAN
Pin	Signal		Pin	Signal
1	CANH		1	CANH
2	CANL		2	CANL
3	CANGND		3	CANGND
4	*		4	*
5	*		5	*
6	*		6	*
7	*		7	*
8	*		8	*

*Note: In the Signal column, the asterisk indicates the corresponding pin has no internal connections and feed-through for each pin.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector P12 on the NPS-D. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses a straight-through modular cable to connect to the NPS. The connections are shown in the diagram below.

A 120 Ω CAN terminator should be placed in the last drive in the chain. The XTL-NT is a 121 ohm resistor in a male modular connector. This provides an easy way to terminate the last drive in a CAN network.

AFS.

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME software communicates with the drive over this link and is then used for complete drive setup. The CANopen Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well. The RS-232 connector, P12, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adapter to interface this cable with a 9-pin RS-232 port on a computer.

P12 DEV RS-232

Pin	Signal
2	RS232RX1 [RxD]
3,4	SGND
5	RS232TX1 [TxD]

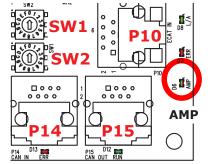
SER-USB-RJ11

This device provides connectivity between a USB connector and the RJ-11 connector J9 on the DEV board.

Note: Use the Serial Interface Cable USB to RJ11 (SER-USB-RJ11) to plug-into either a customer-designed board with an RJ11 or a Copley NPS drive with the NPS-D. When you order either type of board, the Manufacturer recommends you order the Serial Interface Cable USB to RJ11 (SER-USB-RJ11).

controls

copley 🥬 Nano Module CANopen



NPS-D

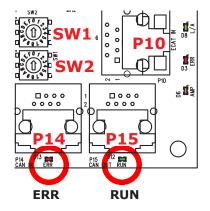
AMP STATUS LED

A bi-color AMP LED displays the state of the drive. Colors do not alternate, and can be solid ON or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table below is shown.

LED	CONDITION DESCRIPTION			
Red/Blinking	Latching fault. Operation can not resume until the drive is Reset.			
Red/Solid	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.			
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.			
Green/Fast-Blinking	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.			
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.			

/AFS/


LATCHING FAULTS

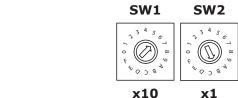

Default	Optional (Programmable)	
Short Circuit (Internal or External)	Over-voltage	
Drive Over-Temperature	Under-voltage	
Motor Over-Temperature	Motor Phasing Error	
Feedback Error	Command Input Lost	
Following Error	Motor Wiring Disconnected	
STO Active	Over Current (latched)	

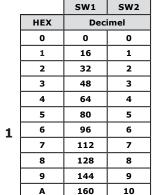
CAN BUS COMMUNICATIONS

CAN LEDS

The green LED "RUN" shows the state of the CAN state machine. The red LED "ERR" shows the status of the CAN physical layer and errors due to the missing messages.

CAN DEVICE ID


Drives operating on a CANopen system must have a Device ID set either through programming or set through inputs or switches located on the Dev board. In the NPS-D, this is provided by two 16-position rotary switches with hexadecimal encoding. These switches can set the Device ID of the drive from 0x01~0x7F (1~127 decimal). The CAN Device ID Switch table includes the decimal values of the hex settings for each switch. In the table, the Decimel column includes the decimal values and the HEX column includes the corresponding hex settings for each switch (SW1 and SW2).


For Example 1: To find the switch settings for the Decimal Device ID 107, refer to the table to calculate the following:

1) In the table SW1 column, find the highest number that is less than 107, (96). Refer to the SW1 column and set SW1, (96) to the corresponding hex value that appears in the HEX column, (6).

96 < 107 and 112 > 107, so SW1 = 96 = Hex 6

2) Subtract 96 from the desired Device ID (107) to get the decimal value of switch SW2, (11). Refer to the SW2 column and set SW2, (11) to the corresponding hex value that appears in the HEX column, (B). SW2 = (107 - 96) = 11 = Hex B

176

192

208

224

240

11

12

13

14

15

2

В

С

D

Е

F

CAN Device ID Switch

Decimal Values

NPS-D CANOPEN CONNECTORS

CAN CONNECTORS

copley

controls

Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

P14	CAN-IN	P15	CAN-OUT
Pin	Signal	Pin	Signal
A1	CANH	A1	CANH
A2	CANL	A2	CANL
A3	SGND	A3	SGND
A4	*	A4	*
A5	*	A5	*
A6	*	A6	*
A7	SGND	A7	SGND
A8	*	A8	*

*Note: In the Signal column, the asterisk represents these pins feed-through between P14 & P15. They have no internal connections.

NPS-D SAFE TORQUE OFF (STO)

DESCRIPTION

The following tables and diagrams show the use of external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive.

STAT-OUT Operation

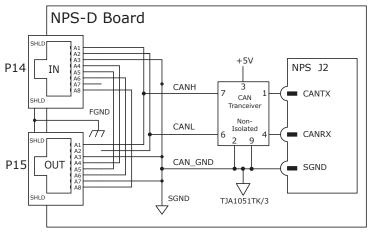
-				
ST01	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

Note: In the STAT-OUT Operation table, the following describes each row.

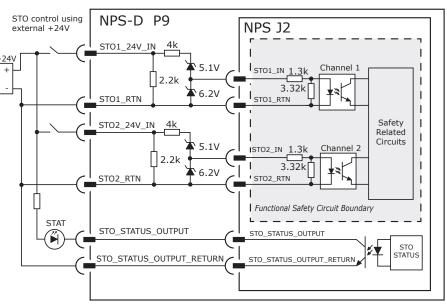
- STO1 & STO2 rows, 1=24V are applied between the IN-24V and RTN. 0=open-circuit.
- STAT row, 1=the optocoupler is ON. 0=the optocoupler is OFF.
- STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

P9 STO

Signal	Pin		Signal Pin		Signal
FGND	1	6	STO_STATUS_OUTPUT		
STO1_24V_IN	2	7	STO_STATUS_OUTPUT _RETURN		
STO1_RTN	3	8	SGND		
STO2_24V_IN	4	9	VLOGIC		
STO2_RTN	5				


STO OPERATION

STO Input Voltage	STO State		
STO1_24V_IN AND STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.		
STO1_24V_IN OR STO2_24V_IN < 5 Vdc	STO Active. Drive cannot be enabled to produce torque.		
STO1_24V_IN OR STO2_24V_IN OPEN			
Note: In the above table, voltages are referenced between an STOx, 24V, IN and an STOx, RTN in P9			


E.g. $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$

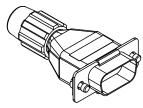
If there are multiple NPS drives with NPS-D in the system, the 121 ohm terminator should be placed only on the last drive in the chain.

/AFS/

The hardware Enable input (IN1) is used with an immediate contact relay to bring the motor to a stop before a delayed contact relay deenergizes the STO inputs and prevents torque production in the motor.

NPS-D SAFE TORQUE OFF (STO) BYPASS

The Bypassing feature is used in conditions when you choose not to use the STO function. The STO-CK-04 has jumpers that use the VLogic to energize the STO inputs.

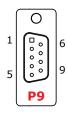

This feature disables the STO function, allowing the drive to be enabled from either the hardware inputs or the network.

AFS

STO-CK-04

copley

controls

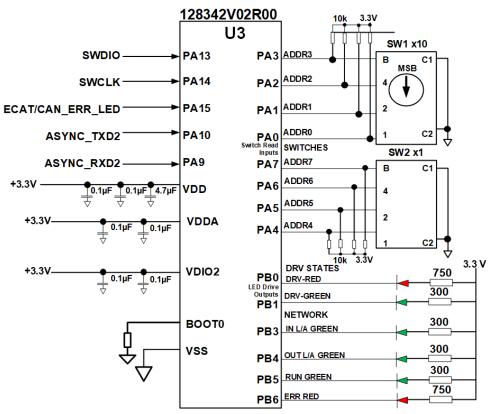


WIRING Diagram

Nano Module CANopen

In the diagram, the colored lines are as follows: • RED = (VLOGIC): 2,4,9

- BLUE = (SGND): 3,5,8



NPS-D SWITCHES & LEDS

CAN DEVICE ID SWITCH CONNECTIONS & LEDS

The following diagram shows the connections to the CAN Device ID switches and status LEDs.

The switches are read after the drive is reset or powered-ON. When changing the settings of the switches, be sure to either reset the drive or power the drive OFF-ON.

Device ID Switch Connections & LEDS Diagram

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics. Contact Information:

Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
128342V02R00	Arrow Electronics	Pre-programmed uC for Address Switch and LED

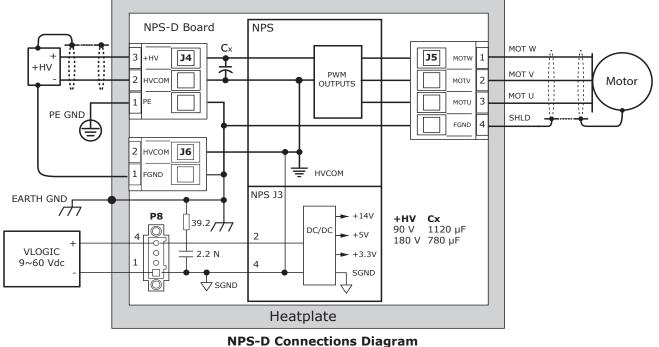
NPS-D +HV, MOTOR & VLOGIC CONNECTIONS

J4 +HV

The +HV power supply connects to J4 pins 2 and 3. In the diagram, the shield shown is optional and is primarily used for the reduction of RF emissions from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits.

J5 MOTOR

Pins $1 \sim 3$ are used for the motor windings. Pin 4 is used for a cable shield. It connects to the drive heatplate on one end and should connect to the motor frame on the other end. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to equipment, without the shield connections, the PWM shield current could flow into external devices.


P8 VLOGIC

P8 powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains and PELV or SELV ratings, and it produces a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

P8 is also used for the connection point for a motor holding brake. These connect to pins 2 and 3 and are not shown here, because it is not part of the power and motor connections.

GROUNDING

PE GND is a Protective Earth Ground which is the zero-volt reference for voltages used in the drive and is also the connection point for fault currents that might flow from any failures in the drive that could expose a user to an electric shock. FGND, Frame Ground is referenced to the drive heatplate and has no connections to any circuits in the drive. Internal connections from the heatplate to J4, J5, and J6 enable cabling for grounding and shielding. HVCOM, High-Voltage-Common is the 0V or 'ground' circuit for the high voltage circuits that drive the motor. SGND, Signal Ground is the 0V circuit for low power control and interface circuits. It is connected to HVCOM internally so that all internal circuits have a common "0V" connection.

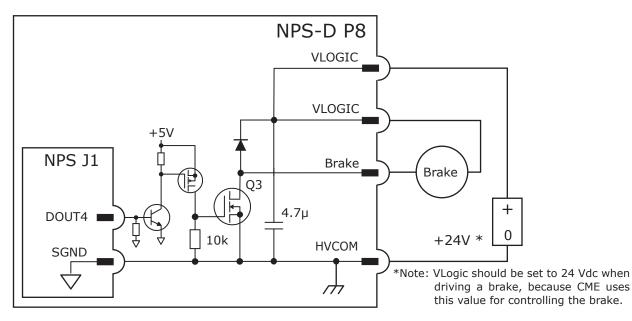
J6 GROUNDS P8 VLOGIC & BRAKE

J5 MOTOR

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
3	+HV	2	HVCOM	4	VLOGIC input	1	MOTW
2	НУСОМ	1	FGND	3	VLOGIC to brake	2	MOTV
1	FGND			2	Brake	3	MOTU
				1	HVCOM	4	FGND

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If 24V Brake is used, 24V is required. If common to +HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.



NPS-D VLOGIC & BRAKE

copley

controls

The following diagram shows the brake circuit on the NPS-D board that is MOSFET driven by the brake output OUT4 of the NPS.

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition	
BRAKE	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.	
[OUT4]	HI	Output MOSFET Q1 is ON. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.	

CME Default Setting for Brake Output [OUT4] is "Brake - Active Low."

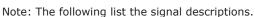
Active = Brake is holding motor shaft (i.e. the *Brake is Active*).

Motor cannot move. No current flows in coil of brake. CME I/O Line States shows [OUT4] as LO. BRK Output voltage is HI (24V), MOSFET Q1 is OFF. Servo drive output current is zero. Servo drive is disabled, PWM outputs are OFF.

Inactive = Brake is not holding motor shaft (i.e. the *Brake is NOT-Active*). Motor can move. Current flows in coil of brake. CME I/O Line States shows [OUT4] as HI. BRK output voltage is LO (~0V), MOSFET Q1 is ON. Servo drive is enabled, PWM outputs are ON. Servo drive output current is flowing.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

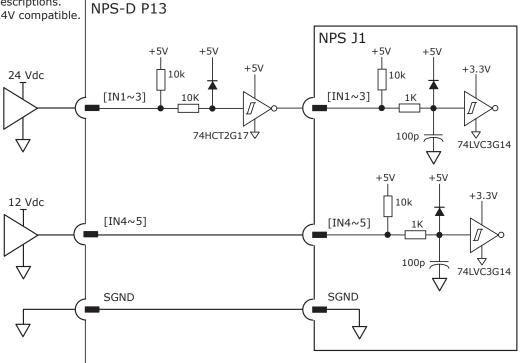
VLogic +9~60. 24V power is recommended. If using a 24V Brake, 24V is required.
If common to HV do not exceed 60V, use REGEN protection and diode isolation from HV.


P8 BRAKE

Signal	Pins
Input VLOGIC	4
Brake VLOGIC	3
Brake	2
HVCOM	1

/AFS/

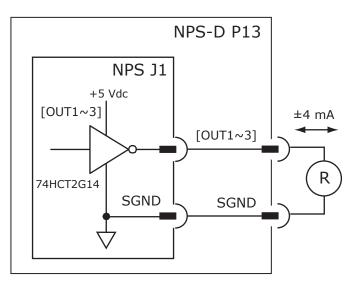
NPS-D INPUTS & OUTPUTS


- IN1~3 on the NPS-D are 24V compatible.
- IN4~5 are 12V tolerant.

P13 LOGIC INPUTS

copley 🕥

controls

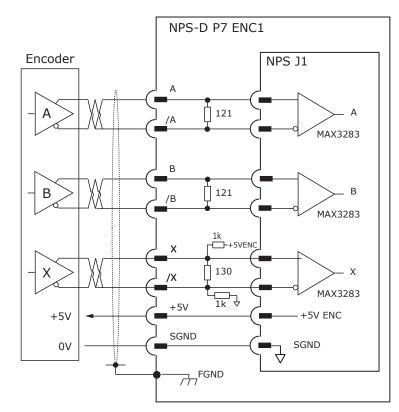

Signal	Pins
IN1_24VTOL [IN1]	4
IN2_24VTOL [IN2]	5
IN3_24VTOL [IN3]	6
IN4	7
IN5	10
SGND	15,19

/AFS/

P13 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	16
DOUT2 [OUT2]	17
DOUT3 [OUT3]	18
SGND	15,19

NPS-D PRIMARY FEEDBACK ENCODER


P7 ENC1 INPUTS

copley 🔬

controls

Signal	Pins
ENCA1_UBC_DAT [A]	14
/ENCA1_UBC_DAT [/A]	13
ENCB1 [B]	12
/ENCB1 [/B]	11
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	10
+5VENC	2,4
SGND	5,15
FGND	1

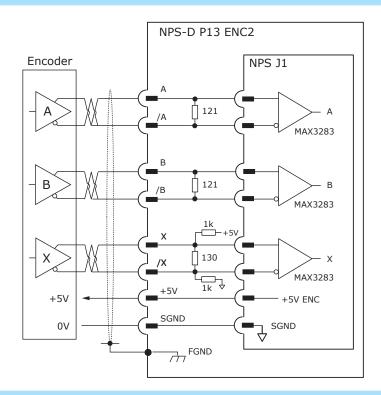
Note: The term, ENC1, is the Motor encoder and should be used in single-encoder applications. In dual-encoder applications, it can be assigned as Primary or Secondary using CME software.

/AFS/

P7 HALL INPUTS

Signal	Pins
HALLU	3
HALLV	6
HALLW	9
SGND	5,15

copley **Nano** Module CANopen


NPS-D SECONDARY FEEDBACK ENCODER

P13 ENC2 INPUTS		
Signal	Pins	
ENCA2 [A]	26	
/ENCA2 [/A]	25	
ENCB2 [B]	24	
	22	

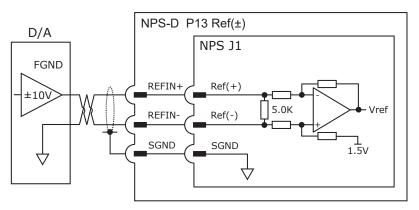
controls

/ENCA2 [/A]	25
ENCB2 [B]	24
/ENCB2 [/B]	23
ENCX2 [X]	22
/ENCX2 [/X]	21
IN5 [Fault]	10
+5VENC	20
SGND	15,19
FGND	1

Note: ENC2 is the Load Encoder. Typically, it provides feedback from a load driven by the motor, and it is used in dualencoder applications. In dual-encoder applications, it can be assigned as Primary or Secondary using the CME software.

/AFS/

NPS-D ANALOG INPUT: AIN1

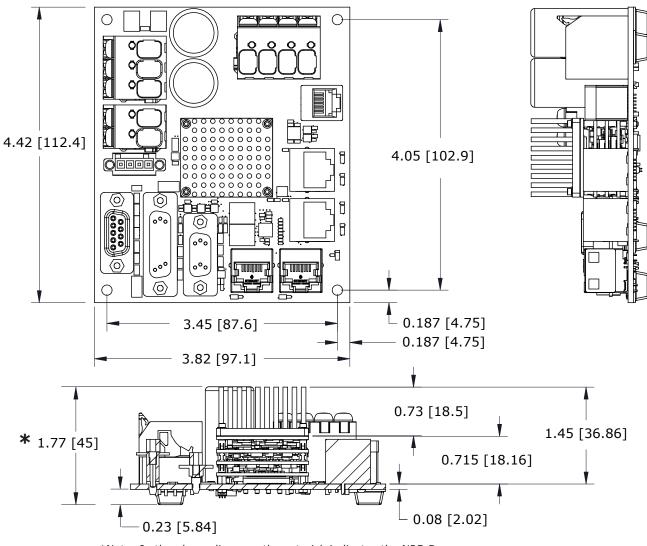

As a reference input, it takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5 kΩ

Signal	P13 Pins
REFIN+ [Ref(+)]	3
REFIN- [Ref(-)]	2
SGND	15, 19

If it is not used as a command input, it can be used as a generalpurpose analog input.



NPS-D DIMENSIONS

copley

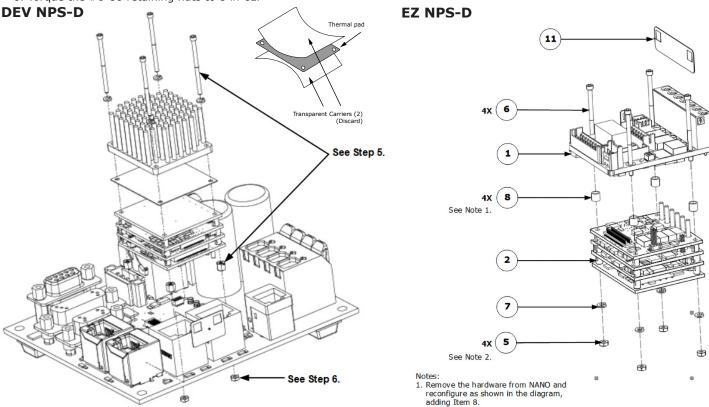
controls

The following diagram shows the NPS-D dimensions.

*Note: In the above diagram, the asterisk indicates the NPS-D height is the same height with or without the heatsink.

NPS-D Dimensions Diagram

/AFS/


NPS-D HEATSINK INSTALLATION

copley 🕥

controls

A thermal pad is used in place of heatsink grease. The pad is die-cut to shape and has holes for the heat sink mounting screws. There are two protective sheets, blue on one side and clear on the other side. Remove both sheets when the interface pad is installed.

- 1. Remove the blue protective sheet from one side of the pad.
- 2. Place the interface pad on the drive, be sure to center the pad holes over the heatplate mounting holes.
- 3. Remove the clear protective sheet from the pad.
- 4. Mount the heatsink onto the drive. Make sure the holes in the heatsink, interface pad, and drive are aligned.
- 5. Torque the _#0-80 mounting screws to 2 in-oz, 0.014 Nm.
- 6. Torque the #0-80 retaining nuts to 8 in-oz.

DEV-NPS-D Board, Heatsink Installation Diagram

EZ-NPS-Z Board, Heatsink Installation Diagram

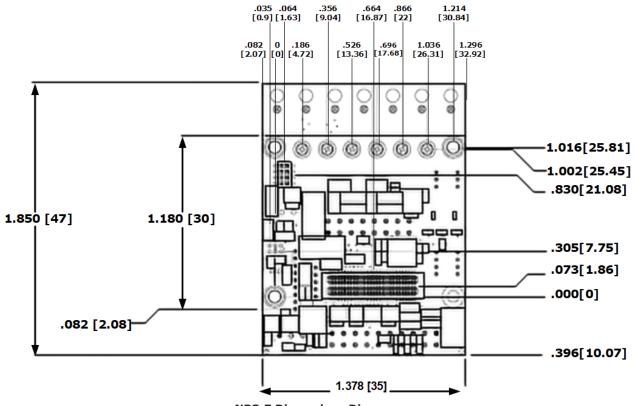
2. Torque the #0-80 mounting screws to

2 in-0z, 0.014 Nm.

N-HK Heatsink Kit

Item	Description	Quantity
1	Screw, #0-80, hex, socket cap screw, 1 in [25.4 mm], stainless steel	4
2	Heatsink, 0.728 [18.49] tall, pins	1
3	Thermal pad	1
4	Spacer, hex, 0.125 in [3.18 mm], 0-80 UNC 2B thread, 0.120 in [3.05 mm] tall, AL	4
5	Washer, medium split lock, #0, 18-8, stainless steel	4
6	Nut, #0-80, fine thread, stainless steel	4
7	IFixit Opening Tool	1

Note: The NPS-090-70-D and NPS-180-30-D are shipped from the factory with the Heatsink included.


/AFS/

NPS-Z DIMENSIONS

copley

controls

The following diagram shows the NPS-Z dimensions in inches and mm.

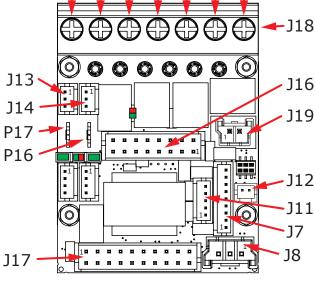
NPS-Z Dimensions Diagram

NPS-Z BOARD

copley 🍙

controls

The NPS-Z Signals and Pins diagram and the tables identify the jumpers, signals and pins on the NPS-Z board.


P7

Models

NPS-090-70-Z
NPS-180-30-Z
NPS-180-10-Z
NPS-090-10-Z

. 11 2	N	J14 CAN	L	J13 CAN
[]13	Pin	OUT	Pin	IN
] J14	1	CANH	1	CANH
P17	2	CANL	2	CANL
· = /	3	SGND	3	SGND
¹ P16				

P17 SHIELD		P16 SH	IELD
Signal	Pin	Signal	Pin
SHLD	1	SHLD	1

P6 P5 P4 P3 P2 P1

J18	
Pin	Signal
1	PE
2	НУСОМ
3	+HV
4	MOTW
5	MOTV
6	MOTU
7	FGND

/AFS/

J19 VLOGIC

Signal	Pin
HVCOM	1
VLOGIC	2

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

NPS-Z Signals and Pins Diagram

2

4

6

8

10

12

14

16

PIN

1

3

5

7

9

11

13

15

17

19

Signal

REFIN1-

REFIN1+

/ENCX2

ENCX2

SGND

/ENCB2

ENCB2 SGND

FGND

+5VENC

Signal

/ENCA2

ENCA2

DOUT1

DOUT2

DOUT3

IN4 18

IN5 20

IN1_24VTOL

IN2 24VTOL

IN3_24V_TOL

J16 STO			
Signal	PIN		Signal
STO1_24V_IN	2	1	STO1_RTN
STO1_IN	4	3	STO1_RTN
N.C.	6	5	N.C.
STO2_24V_IN	8	7	STO2_RTN
STO2_IN	10	9	STO2_RTN
N.C.	12	11	N.C.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_ OUTPUT

	J11 HALL	.s
	Signal	F
RTN	HALLU	

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

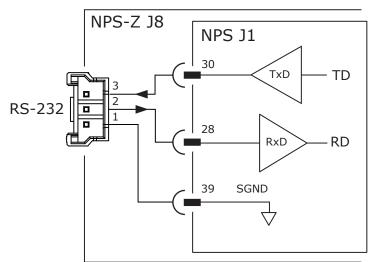
J7 ENCODER 1

Signal	Pin
OVERTEMP_IN	9
ENCX1_UBC_CLK	8
/ENCX1_UBC_CLK	7
ENCB1	6
/ENCB1	5
ENCA1_UBC_DAT	4
/ENCA1_UBC_DAT	3
+5VENC	2
SGND	1

J8 RS-232

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

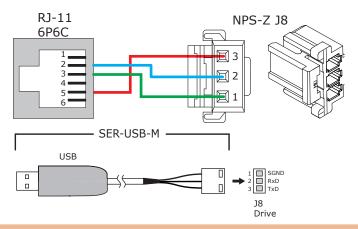
NPS-Z: RS-232


copley

controls

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or it is used for configuration before it is installed into a CAN network. CME software communicates with the drive over this link and it is then used for the complete drive setup. The CAN Device ID is set via RS-232 along with other operating functions.

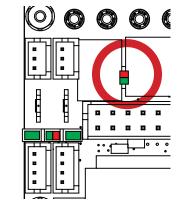

J8 RS-232			
Signal	Pin		
RX232TX1	3		
RS232RX1	2		
SGND	1		

Compatibility with the existing serial-data adapter cables can be done with an RJ-11 socket (6P6C) wired as shown in the diagram.

Molex: 42410-6170 Modular Jack, 6 terminals, size 6

Copley will offers a SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NPS-Z serial port.

NPS-Z: AMP STATUS LED

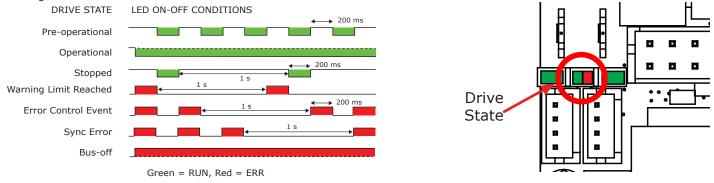

DRIVE STATUS LED (AMP)

A bi-color LED displays the state of the drive. Colors do not alternate, and can be solid O_N or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table will be shown.

LED	Condition Description	
Red/Blinking	Latching fault. Operation cannot resume until the drive is Reset.	
Red/Solid	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.	
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.	
Green/Fast-Blinking	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.	
Green/Solid	Drive OK and enabled. Can run in response to reference inputs or CAN commands.	

LATCHING FAULTS

Default	Optional (Programmable)	
Short circuit (Internal or External)	Over-voltage	
Drive over-temperature	Under-voltage	
Motor over-temperature	Motor Phasing Error	
Feedback Error	Command Input Lost	
Following Error	Motor Wiring Disconnected	
STO Active	Over Current (latched)	


NPS-Z: CAN STATUS LED

coplev

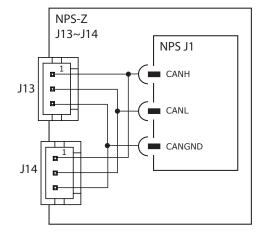
controls

In the diagrams, the GREEN LED, "RUN" shows the state of the CAN state machine. The RED LED, "ERR" shows the status of the CAN physical layer and errors due to missing messages.

Nano Module CANopen

NPS-Z: J13-J14 CAN

CAN CONNECTORS


Dual connectors are provided for CAN bus connectivity. Pins are wired-through, so that the drives can be daisy-chained and controlled with a single connection to the user's CAN interface.

J13-J14 CAN CONNECTORS

J13 CAN		J14 CAN	1
Signal	Pin	Signal	Pin
CANH	1	CANH	1
CANL	2	CANL	2
SGND	3	SGND	3

Place a 120 ohm CAN terminator in the last drive in the chain.

AFS

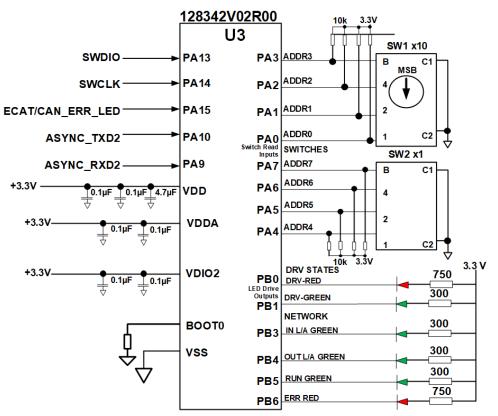
CAN CABLE CONNECTORS

P/N 16-121737 Rev 09

The Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

RJ-	45 CAN	User Mounting Board		
Pin 1 2 3 4 5 6 7			NPS-Z CAN J13 J14 CANH CANL CANL CANGND CANGND CANGND	
8	asterisk nex indicates the	I column, the t to the pins pins are n and have no		

AFS


NPS-Z: DRIVE AND NETWORK STATUS LEDS

copley

controls

The following diagram shows the NPS-Z drive and network status LEDS. The NPS-Z status LEDs descriptions are listed below. • The "STM" chip uses the serial data from ASYNC_TXD2 to drive LEDs.

- DR_STATUS_LED_X signals drive the AMP STATUS LED (refer to the detail on page 2).
- CAN_XXX_LED show the network status of the drive communication.

NPS-Z Drive and Network Status LEDs Diagram

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

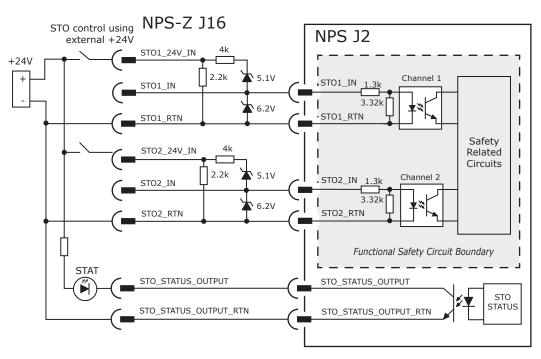
Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
128342V02R00	Arrow Electronics	Pre-programmed uC for Address Switch and LED

NPS-Z: J16 SAFE TORQUE OFF [STO]

DESCRIPTION


copley

controls

The following diagram shows the configuration to use for the external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive.

/AFS/

NPS-Z J16 (STO) Diagram

Note: In the diagram, it shows the +24V can be driven from the VLogic power supply.

- The STOx_24V_IN circuits can tolerate the +60V limit of the VLogic input.
- The STOx_IN maximum voltage limit is +7.0 Vdc.

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

Note: In the STO Status Output table, the following describes each row.

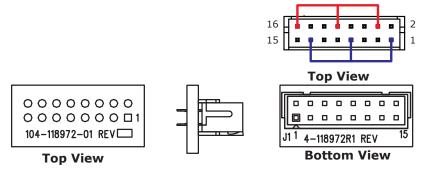
- STO1 & STO2 rows, 1=24V are applied between the IN-24V and RTN. 0=open-circuit.
- STAT row, 1=the optocoupler is ON. 0=the optocoupler is OFF.
- STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

J16 STO				
	Signal	Pin		Signal
S	TO1_RTN	1	2	STO1_24V_IN
S	TO1_RTN	3	4	STO1_IN
	N.C.	5	6	N.C.
S	TO2_RTN	7	8	STO2_24V_IN
S	TO2_RTN	9	10	STO2_IN
	N.C.	11	12	N.C.
	SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS	_OUTPUT	15	16	+5V

STO OPERATION

STO Input Voltage	STO State	
STO1_24V_IN AND STO2_24V_IN ≥ 15 Vdc STO1_IN AND STO2_IN ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
$\begin{array}{l} \text{STO1}_{24V} \text{IN } OR \text{ STO2}_{24V} \text{IN} < 5 \text{ Vdc} \\ \text{STO1}_{IN} OR \text{ STO2}_{IN} \leq 0.8 \text{ Vdc} \\ \text{STO1}_{24V} \text{IN } OR \text{ STO2}_{24V} \text{IN } OPEN \end{array}$	STO Active. Drive cannot be enabled to produce torque.	

Note: In the above table, the voltages are referenced between an STOx_IN and an STOx_RTN in J16. E.g. V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)



NPS-Z: J16 SAFE TORQUE OFF [STO] BYPASS

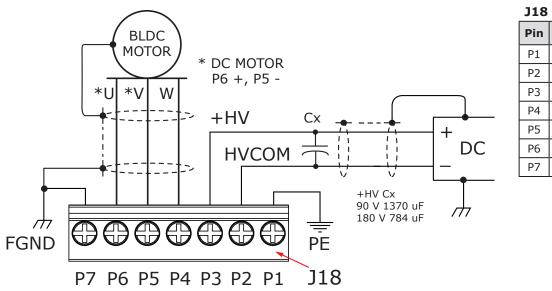
Bypassing is used for users who do not use the STO function. The NS-Z-STO has jumpers that use the VLogic to energize the STO inputs.

This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The graphic shows the wiring of the NS-Z-STO.

/AFS/

NPS-Z: BOARD J18 +HV & MOTOR CONNECTIONS

J18 +HV: P2, P3


copley

controls

The +HV power supply connects to J18 pins P2 and P3. In the following diagram, the shield shown is optional and it is primarily used for the reduction of the RF emissions coming from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits. Bulk capacitance Cx is required from +HV to HVCOM as shown. Cx must be adjacent to the EZ-OEM.

J18 MOTOR: P4~P7

Use Pins P4~P6 for the motor windings. Pin P7 is used for the cable shield. It connects to FGND on one end and should connect to the motor frame on the other end. This connection provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to the equipment, without the shield connections, the PWM shield current could flow into external devices.

ч				
[↑] Note [,] In the a	liagram the asterig	sk indicates the	DC brush moto	rs connect to P6 & P5.

Motor Connections Diagram

k

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If the 24V Brake is used, 24V is required.
If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Signal

HVCOM

+HV

MOTW

MOTV

MOTU

FGND

PE

NPS-Z: J12 BRAKE

copley

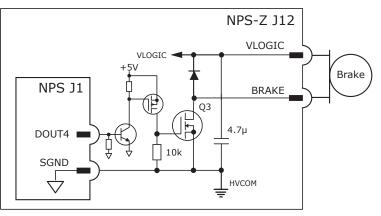
J12 BRAKE:

controls

The EZ board has components that can actuate a brake when controlled by DOUT4. If it is not used for the brake, DOUT4 is programmable for other functions.

Nano Module CANopen

SPECIFICATIONS


Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Pin	Signal	
2	VLOGIC	
1	BRAKE	

Use the CME software to set the custom brake configuration. This configuration includes settings for VLogic, Initial Voltage, Time at Initial Voltage, Holding Voltage, and PWM Period.

/AFS/

HI/LO DEFINITIONS: OUTPUTS

Condition

Output MOSFET Q1 is OFF.

Output MOSFET Q1 is ON.

Motor cannot move.

Brake state is Active.

Motor is free to move. Brake state is NOT-Active.

Brake is un-powered and locks motor.

Brake is powered, releasing motor.

State

LO

ΗI

CME Default Setting for Brake Output [OUT4] is "Brake - Active Low."

- Active = Brake is holding motor shaft (i.e. the *Brake is Active*). Motor cannot move. No current flows in coil of brake. CME I/O Line States shows [OUT4] as LO. BRK Output voltage is HI (24V), MOSFET Q1 is OFF. Servo drive output current is zero. Servo drive is disabled, PWM outputs are OFF.
- Inactive = Brake is not holding motor shaft (i.e. the *Brake is NOT-Active*). Motor can move. Current flows in coil of brake. CME I/O Line States shows [OUT4] as HI. BRK output voltage is LO (~0V), MOSFET Q1 is ON. Servo drive is enabled, PWM outputs are ON.

Servo drive output current is flowing.

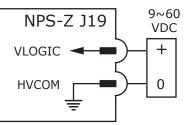
NPS-Z: J19 VLOGIC

J19 VLOGIC:

The J19 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains, PELV or

SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Input Dowor	Тур	4 W
Input Power	Max	8 W


Note: The typical input power is no load on encoder +5V. The maximum input power is with two encoders @ 250 mA each, and +5V at maximum. SELV ratings, and produce a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

Input

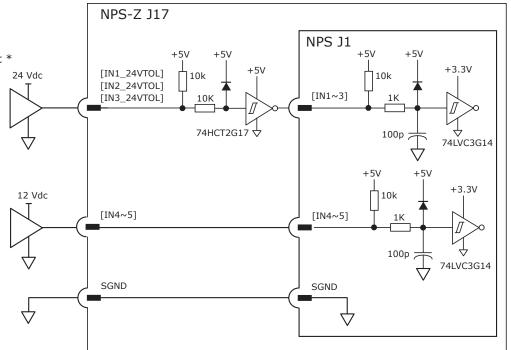
BRAKE

[DOUT4]

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic $+9\sim60.24V$ power is recommended. If the 24V Brake is used, 24V is required. If common to +HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

copley **Nano** Module CANopen

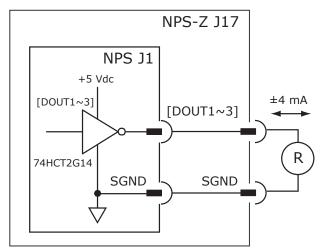


NPS-Z: J17 INPUTS & OUTPUTS

- J17 has the following connections:
- Digital inputs $1{\sim}5$
- Digital outputs 1~3
- Analog differential input *
- Secondary Quad A/B/X Encoder Input *
- * See page 39
- Note: IN1~3 are 24V compatible. IN4~5 are 12V tolerant.

J17 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3_24VTOL	10
IN4	18
IN5	20
SGND	11,17


/AFS/

J17 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	12
DOUT2 [OUT2]	14
DOUT3 [OUT3]	16
SGND	11,17

J17 I/O

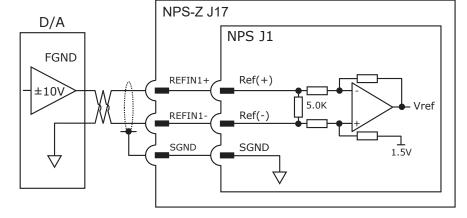
-				
Signal	Pins		Signal	
/ENCA2	2	1	REFIN-	
ENCA2	4	3	REFIN+	
IN1_24VTOL	6	5	/ENCX2	
IN2_24VTOL	8	7	ENCX2	
IN3_24VTOL	10	9	+5VENC	
DOUT1	12	11	SGND	
DOUT2	14	13	/ENCB2	
DOUT3	16	15	ENCB2	
IN4	18	17	SGND	
IN5	20	19	FGND	

NPS-Z: J17 ANALOG INPUT

As a reference input, it takes Position/Velocity/Torque commands from a controller.

If it is not used as a command input, it can be used as generalpurpose analog input.

/AFS/

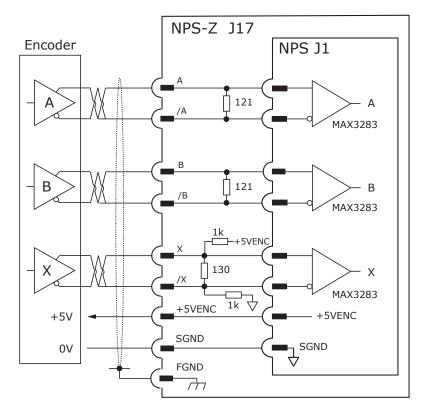

SPECIFICATIONS

copley 🍙

controls

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	P1 Pins
Ref(+)	3
Ref(-)	1



NPS-Z: J17 SECONDARY ENCODER

The secondary encoder is used when the load is not connected directly to the motor.

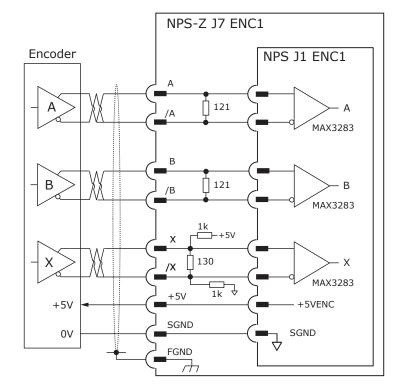
J17 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	15
/ENCB2 [/B]	13
ENCX2 [X]	7
/ENCX2 [/X]	5
+5VENC	9
SGND	11,17
FGND	19

NPS-Z: J7 PRIMARY ENCODER

The ENC1 is the Motor encoder and should be used in single-encoder applications.

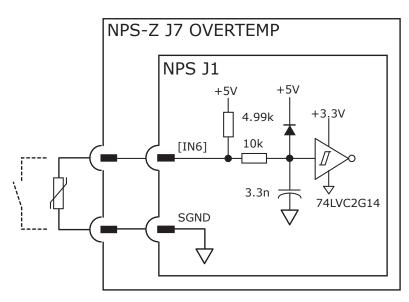
In dual-encoder applications, it can be assigned as Primary or Secondary using the CME software.


/AFS/

J7 ENC1 INPUTS

copley 🍙

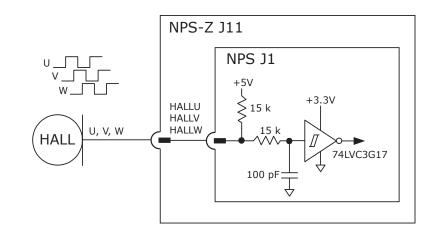
controls


Signal	Pins
ENCA1_UBC_DAT [A]	4
/ENCA1_UBC_DAT [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	9
+5VENC	2
SGND	1

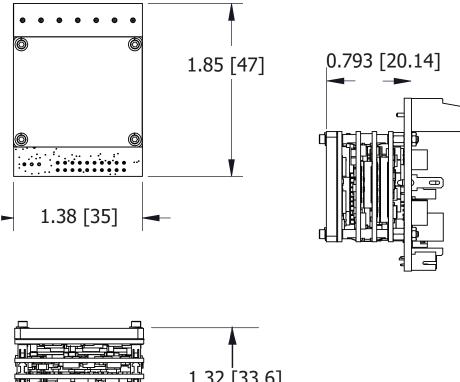
NPS-Z: J7 OVERTEMP

The Input IN6 has a 49 microsecond rise time RC filter with a 4.99 k Ω pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard PTC Thermistor: IAW BS 49990111(1987) which is the standard for the built-in thermal protection of the motor as a default.

If it is not used for the Motemp function, the IN6 can be reprogrammed for other input functions.



NPS-Z: JII HALLS


J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

NPS-Z MECHANICAL

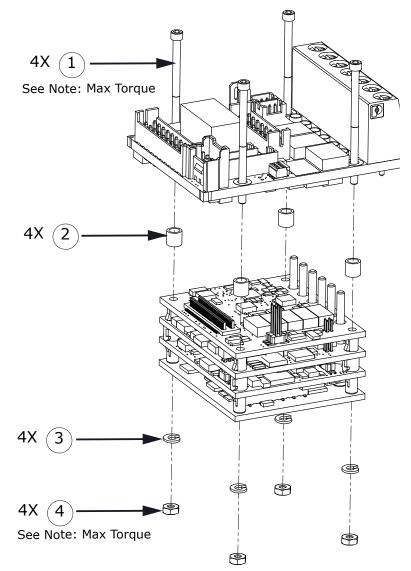
The following diagram shows the NPS-Z dimensions in inches and mm.

NPS-Z Dimensions Diagram

NPS-Z: MECHANICALS

In the NPS-Z Components diagram, it shows the location of the parts in the drive when it is shipped. Use screw lengths of 1'' [25.4 mm] to allow the nuts and washers to secure the parts together.

When the user secures the nuts to the underside of the board to mount the board to the panel, add the nuts' (depth or width) to this number to calculate the minimum length of screws required. For a panel with tapped holes, the 1"[25.4 mm] screw should be sufficient.


AFS

Note: Max. Torque:

copley

controls

The maximum torque of the #080 mounting screws is 2 in-oz .014Nm.

Item	Qty	Description Mfgr, Part Number	
1	4	Screw, 1", hex, 0-80, 18-8 THD, 80-1 SS	Fastenal: 0171020
2	4	Spacer, 3 mm, 0.090" I.D, 0.125" O.D.	Bivar: 937-3MM
3	4	Washer, split, 0.062 ID, 18-8, 0.137" O.D. SS	Fastenal: 017926
4	4	Nut, 0-80, 1/8", hex, socket, cap 18-8 SS	Fastenal: 0173909

copley **Nano** Module CANopen

/AFS/

ORDERING GUIDE

NANO

Part Number	Description
NPS-090-10	Nano Micro Module CAN NPS servo drive, 5/10 A, 90 Vdc
NPS-090-70	Nano Micro Module CAN NPS servo drive, 35/70 A, 90 Vdc
NPS-180-10	Nano Micro Module CAN NPS servo drive, 5/10 A, 180 Vdc
NPS-180-30	Nano Micro Module CAN NPS servo drive, 15/30 A, 180 Vdc
NPS-090-10-D	Nano Micro Module CAN NPS with DEV board, not soldered, no heat sink
NPS-090-70-D	Nano Micro Module CAN NPS with DEV board, soldered, with heat sink
NPS-180-10-D	Nano Micro Module CAN NPS with DEV board, not soldered, no heat sink
NPS-180-30-D	Nano Micro Module CAN NPS with DEV board, not soldered, with heat sink
NPS-090-10-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink
NPS-090-70-Z	Nano Micro Module CAN NPS with EZ board, soldered , no heat sink
NPS-180-10-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink
NPS-180-30-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink

ACCESSORIES FOR NPS

Part Number	Description
N-HK	Heatsink Kit

ACCESSORIES FOR NPS-D

Part Number	Description		
NS-D-CK	NPS-D Connector Kit		
STO-CK-04	S-D Bypass Jumper		
N-HK	Heatsink Kit		
SER-USB-RJ11	USB to 6-pin Modular Adapter		
CAN-USB-01	Single Channel CAN-USB Interface		
N-DEV-NK	CANopen Network Kit		

CONNECTOR KIT FOR NPS-D

Model	Qty	Ref	Name	Description	MFGR Part Number
	1	P8	VLogic and Brake	Connector, terminal-block, 4-pole, 3.5 mm	Wago: 734-104/107-000
	1	FO		Tool, for P8	Wago: 734-231
	2	P7,P9	I/O	Connector Cover, D-Sub, 9-pin	3M: 3357-9209
NS-D-CK Connector	1	P9	Safety	Connector, D-Sub, 9-position, size 1	TE: 205204-4
Kit	9	P9	Safety	Contact, pin, crimp, snap-in, 24~20 AWG	TE: 66506-9
	1	P7	I/O	Connector Cover, D-Sub, 15-pin	3M: 3357-9215
	1	P7	Feedback	Connector, D-Sub, 15-pin (HD), male, solder cup	Norcomp: 180-015-103L001
	1	P13	I/O	Connector, D-sub, 26-pin (HD), male, solder cup	Norcomp: 180-026-103L001
N-DEV-NK				CANopen Network Kit	

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

/AFS/

ORDERING GUIDE

controls

ACCESSORIES FOR NANO MICRO MODULE NPS-Z

copley **Nano** Module CANopen

Part Number	Description
NS-Z-CK NPS-Z Connector Kit	
N-HK	Heat Sink Kit
SER-USB-M	USB to 3-Pin Molex Adapter Cable

CONNECTOR KIT FOR NPS-Z

Models	Qty	Ref	Name	Description	MFGR Part Number
	1	J8	RS-232	Connector, Housing Receptacle, 1 x 3 Pin, 2 mm, Polyester	Molex: 35507-0300
	1	J19	VLogic	Connector, Housing Receptacle, 1 x 2 Pin, 2 mm, Polyester	Molex: 35507-0200
	1	J19	VLogic + V Wire	Cable, 24 AWG Red, 12 in, Tin Crimp Socket on one end	Molex: 0502128000-12-R4
	1	J19	VLogic -V Wire	Cable, 24 AWG Black, 12 in, Tin Crimp Socket on one end	Molex: 0502128000-12-B4
	5	J8, J19	Molex Crimps	Crimp, Socket 30-24 AWG, 1.4 mm max. insulation, Tin	Molex: 50212-8000
	1	J7	ENC1, MOTEMP	Connector, Housing Socket, 1 x 9 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-9S-1.25C
	2	J9,J10	ECAT	Connector, Housing Socket, 1 x 4 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-4S-1.25C
	1	J11	Halls	Connector, Housing Socket, 1 x 5 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-5S-1.25C
	1	J12	Brake	Connector, Housing Socket, 1 x 2 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-2S-1.25C
	2	J13,J14	CAN	Connector, Housing Socket, 1 x 3 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-3S-1.25C
	3	J7,J9,J10, J11,J12, J13,J14	DF13 Wires +V	Cable, 26 AWG Red, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-R6
NS-Z-CK	3	J7,J9,J10, J11,J12 J13,J14	DF13 Wires Gnd	Cable, 26 AWG Black, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-B6
Kit	20 J11	J7,J9,J10, J11,J12, J13,J14	DF13 Wires Gen Purp	Cable, 26 AWG White, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-W6
	1	J12	Brake Wire	Cable, 26 AWG Blue, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-L6
	24	J7,J9,J10, J11,J12, 13,J14	DF13 Crimps	Crimp, Socket, 30-26 AWG, 1 mm max Insulation, Gold	Hirose: DF13-2630SCFA
	1	J16	STO	Connector, Housing 2 x 8 Pin, 2 x 2 mm, Nylon Black	Hirose: DF11-16DS-2C
	1	J17	In1~In5, Out1-3, ENC2, Aref	Connector, Housing 2 x 10 Pin, 2 x 2 mm, Nylon Black	Hirose: DF11-20DS-2C
	3	J16,J17	DF11 Wires +V	Cable, 26 AWG Red, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-R6
	4	J16,J17	DF11 Wires Gnd	Cable, 26 AWG Black, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-B6
	17	J16,J17	DF11 Wires Gen Purp	Cable, 26 AWG White, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-W6
	36	J16,J17	DF11 Crimps	Crimp, Socket, 28-24 AWG, 1.45 mm max Insulation, Gold	Hirose: DF11-2824SCFA(04)
	2	P16,P17	Cable Shields	Faston, Receptacle, 26-22 AWG, 0:11 - 0.125 in Wide 0.02 in thick, Positive Lock	TE: 353249-2
	1	J16	STO Bypass PCB	Copley STO Bypass Board	Copley: NS-Z-STO

Note: Specifications subject to change without notice.

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

/AFS/

REVISION HISTORY

copley of controls

16-121737 Document Revision History

Revision	Date	Remarks
00	November 12, 2019	Initial released version
01	November 22, 2019	NPS-090-10 added
02	December 6, 2019	Deleted EtherCAT references, updated accessories, corrections to diagram on page 15.
03	May 20, 2020	Added thermals, added -D models to table above.
04	February 22, 2021	Deleted NPS-090-10 model, NPS-D only
AA	April 7, 2021	Pre-production revision - Changed revision to pre-production naming convention. Updated signal names to follow NPS-D and added connector kit for NPS-D.
AB	November 1, 2021	Pre-production revision - Changed revision to pre-production naming convention. Added -Z board
05	June 22, 2022	Production revision Updated with 24V recommendations for VLogic, updated with 3.3V input, updated with capacitor on +HV input
06	August 8, 2022	Corrected pages 6 and 13 to match STO pinouts on page 14.
07	October 13, 2023	Updated text & graphics to change P1 to J1 (where applicable) and updated Accessories section. Added STO Warning on pages 6 & 14 and added U3 information on pages 24 & 35.
08	March 26, 2024	Update mechanical drawings: VLogic pin length and torque values. In +HV Connections & STO sections, update values & diagrams. For NPS connections, replace +5 with +5VENC value, where applicable.
09	June 12, 2024	Replace obsolescent Arrow part number:128342V00R00 with new Arrow part number:128342V02R00.