

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

PCF Plus Common Features

- Virtual Multi-Axes with IDC
- Large CVM dRAM 64k
- Large Trace 16k
- · Built-in Ethernet

Control Modes

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- · Interpolated Position (PT, PVT), Homing
- Indexer, Point-to-Point
- · Camming, Gearing
- Position, Velocity, Torque

Command Interface

- CANopen® Application Protocol over EtherCAT® (CoE)
- ASCII, Serial Binary, and Discrete I/O
- · Stepper or Quad A/B Position Commands
- PWM Position-Velocity-Torque Command
- Master Encoder (Gearing/Camming)
- ±10 V Position-Velocity-Torque

Communications

- EtherCAT
- Ethernet
- UDP, TCP-IP, Modbus-TCP, Ethernet/IP
- RS-232

Feedback

- Dual Absolute
 BiSS, SSI, EnDat
 Absolute A
 - Panasonic™, Sanyo Denki™, Tamagawa™
- Analog Sin/Cos Encoder
- Digital Quad A/B/X Encoder
- Secondary Encoder/Emulated Output
- Digital Halls

I/O

- 1 Analog Input ±10V, 16-bit
- 7 High-Speed Digital Inputs
- 6 High-Speed Digital Outputs
- High-Speed Pulse-at-Position
- SLI Support: DOUT4~6, IN7
- I/O Expansion

Safe Torque Off (STO)

SIL 3, Category 3, PL e

Dimensions: in [mm]

- NEP-HP: 1.3 x 2.6 x 2.5 in [33 x 66 x 63.5 mm], 5.8 oz [164 g]
- NEP-HP-Z:1.44 x 2.6 x 2.5 in [36.5 x 66 x 63.5 mm], 7.6 oz [215 g]

Description

The Nano^{Plus} High Power drive provides 100% digital control of brushless servo motors in a compact DC powered, modular package. The NEP-HP models operate as nodes used for transmitting data on an EtherCAT network. Servo drives can perform the CoE (CANopen protocol over EtherCAT) operating modes with the additional cyclic-synchronous Position, Velocity, and Torque modes. This drive complies with the requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries.

NEP-HP

Model	Ic	Ιp	VDC
NEP-090-80-C	80	80	9~90
NEP-090-140-C	140	140	9~90

NEP-HP-Z (Soldered to EZ Board)

Model	Ic	Iρ	VDC
NEP-090-80-C-Z	80	80	9~90
NEP-090-140-C-Z	140	140	9~90

The Nano has a third party approved STO feature. Opto-isolators provide connections to user wiring and controls.

The NEP-HP drive can be mounted to any of the following:

- directly on the motor or within the robotic joints
- •the user PC boards using either connectors
- soldered into the board

An optional interface board provides connectors which simplify the integration into customer applications.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 1 of 32

controls Nano Plus-HP EtherCAT PCF NEP-HP

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS Test conditions: Load = Wye connected MODEL	load: 1 mH+ 1 Ω NEP-090-80-C	line-line. Ambient temp	erature = 25 °C. +HV = HVmax.	
		NEP-090-140-C-Z	Units	
OUTPUT POWER				
Peak Current	80 (56.6)	140 (99.0)	Adc (Arms, sinusoidal)	
Peak Time	N/A	N/A	Sec	
Continuous Current	80 (56.6)	140 (99.0)	Adc (Arms, sinusoidal)	
Peak Output Power	4.7	8.3 8.3	kW kW	
Continuous Output Power *Note: For EZ packages, all Nano F	4.7 Plus HP modules ar			
INPUT POWER	ido in moduleo di	e soldered lines the EE		
HVmin to HVmax	+9 to +90	+9 to +90	Vdc, transformer-isolated	
+HV Absolute Max.	+95	+95	Vdc, transformer-isolated	
Ipeak	50	88	Adc	
Icont	50	88	Adc continuous	
VLOGIC	+9 to +60	+9 to +60	Vdc, transformer-isolated	
VLOGIC Absolute Max.	+60	+60	Vdc, transformer-isolated	
VLOGIC Power	4 W with r	no encoder, 8 W with er	coder +5V @ 500 mA, VLOGIC @ 24 VDC output.	
PWM OUTPUTS				
Туре	MOSFET 3-pha	se inverter, 16 kHz cent	er-weighted PWM carrier, space-vector modulation	
PWM Ripple Frequency	32 kHz			
Minimum Load Inductance	200 μΗ			
BANDWIDTH				
Current Loop, Small Signal			ith tuning & load inductance.	
HV Compensation		do not affect bandwidtl	٦.	
Current Loop Update Rate	16 kHz (62.5 μ			
Position & Velocity Loop Update Rat	te 4 kHz (250 µs)			
COMMAND INPUTS				
EtherCAT			erCAT (CoE): Cyclic Synchronous Position/Velocity/Torque,	
			olated Position (PVT), Homing, nutation Angle (CSTCA)	
Stand-Alone Mode:				
Digital Position Reference	Pulse/Direction		ommands (4 MHz maximum rate)	
	Quad A/B Enco		/sec, 40 Mcount/sec (after quadrature)	
Digital Torque & Velocity Reference			% - 100%, Polarity = 1/0	
		PWM 50% PWM = $50\% \pm 50\%$, no polarity signal required.		
		PWM frequency range 1 kHz minimum, 100 kHz maximum		
Indexing		PWM minimum pulse width 220 ns Up to 32 sequences can be launched from inputs or ASCII commands.		
Camming		Up to 10 CAM tables can be stored in flash memory.		
ASCII		RS-232, 9600~230,400 Baud, 3-wire		
Analog		ty, Profile Velocity, Posit	ion	
DIGITAL INPUTS NEP-HP	· · · · · · · · · · · · · · · · · · ·			
Number	7			
IN1~4, 6	General purpos	se inputs		
1.12 ., 0			igger, 5V compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc,	
	max. voltage = $+6$ Vdc, 1.42×2.38 Vdc positive-going threshold, 0.70×1.44 Vdc negative-going threshold			
	RC time-consta	int assumes active drive	e on inputs and does not include 10 $k\Omega$ pull-ups.	
IN5	Motor overtem	perature, LV CMOS 5V S	Schmitt trigger, 100 μ s RC filter, 1.6 $k\Omega$ pull-up to +5 Vdc,	
	max. voltage =	+6 Vdc, 2.53~3.43 Vd	Ic positive-going threshold, 1.25~2.20 Vdc negative-going threshold	
	Also, connected	d to an ADC channel for	continuous signal acquisition.	
IN7	High speed 5V	AHCT TTL Schmitt trigg	er, 100 ns RC filter, 10 k Ω pull-up to +5V, max. voltage = +6 Vdc	
			l, 0.55 Vdc max. negative-going threshold	
	Programmable	as SLI Function: SLI_M	ISO	
DIGITAL INPUTS NEP-HP-Z				
IN1~2			mpatible, 1 μ s RC filter, 10 $k\Omega$ pull-up to +5 Vdc, max.	
IN3~4			sitive-going threshold, 1.25~2.20 Vdc negative-going threshold igger, 5V compatible, 100 ns RC filter, 10 kΩ pull-up to +5 Vdc,	
	max. voltage =	+6 Vdc, 1.42~2.38 Vd	lc positive-going threshold, 0.70~1.44 Vdc negative-going threshold	
IN5			Schmitt trigger, 100 μ s RC filter, 1.6 $k\Omega$ pull-up to +5 Vdc,	
			Ic positive-going threshold, 1.25~2.20 Vdc negative-going threshold	
TNIC	Also connected to an ADC channel for continuous signal acquisition.			
IN6	Not available as an input. It is driven by an IC that checks the states of the ENCA and ENCB encoder signals. If errors are found, IN6 will go TRUE, disabling the drive.			
	High speed 5V AHCT TTL Schmitt trigger, 100 ns RC filter, 10 k Ω pull-up to +5V, max. voltage = +6 Vdc			

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 2 of 32

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

DIGITAL OUTPUTS

Number

OUT1~3 CMOS +5 Vdc inverters, 4.99 $k\Omega$ pull-up to 3.3 Vdc, functions programmable

Source -8 mA @ VOH > 3.94 Vdc, Sink 8 mA @ VOL < 0.36 Vdc

OUT4~6 HS CMOS +3.3 Vdc inverters, functions programmable

Source -16 mA @ VOH ≥ 2.4 Vdc, Sink 16 mA @ VOL ≤ 0.4 Vdc

General purpose programmable or SLI functions: OUT4 = SLI_MOSI, OUT5 = SLI_CLK, OUT6 = SLI_EN1

ANALOG INPUT

Number

Type Differential, ± 10 Vdc range, 5.1 k Ω input impedance, 16 bits, single-pole, -3 dB @ 1450 Hz input filter Function

Torque, Velocity, Position command or as general purpose analog input

SERIAL COMMUNICATION PORT

RS-232: RxD, TxD, SGND Signals

Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 Baud Mode

Protocol ASCII or Binary format

Isolation Non-isolated. Referenced to Signal Ground.

ETHERCAT PORT

100BASE-TX Format

EtherCAT, CANopen Application Protocol over EtherCAT (CoE) Protocol

External magnetics required for module. NEP-HP-Z have internal magnetics. Isolation

Max. voltage with respect to grounds: 32 Vdc

MOTOR CONNECTIONS

Motor U.V.W Drive outputs to 3-phase brushless motor, Wye or delta connected DC brush motors use outputs U & V.

Minimum inductance: 200 µH line-line

Encoder Digital encoders, incremental and absolute (See FEEDBACK below).

Analog Sin/Cos incremental Halls Digital U/V/W, 120°

Input is programmable to disable the drive if the motor sensor drives input HI or LO. Motemn

FEEDBACK

Incremental Encoders:

Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).

5 MHz maximum line frequency (20 Hz counts/sec) $1~k\Omega$ pull-up on (+), $1~k\Omega$ pull-down on (-) input

 $VT+ = 1.2 \sim 2.0 \text{ Vdc min.}, VT- = 0.8 \sim 1.5 \text{ Vdc max.}, VH = 0.3 \sim 1.2 \text{ Vdc}$ Analog Incremental Encoder Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20%

BW > 300 kHz, 16-bit resolution, with zero-crossing detection

Absolute Encoders:

EnDat, SSI, CSR Serial Clock (X, /X), and Data (A, /A) signals

SD+, SD- (A, /A) signals, 2.5 or 4 MHz, half-duplex, 32 bit Absolute A

BiSS MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder. Terminators All encoder data inputs and clock outputs are differential and require external terminators.

Commutation Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc

Encoder Power +5 Vdc ±2% @ 250 mAdc max., shared by dual encoders.

HALLS

Digital U-V-W Single-ended, 120° electrical phase difference

Schmitt trigger, 1.5 µs RC filter from active HI/LO sources, 5 Vdc compatible

15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds

5V OUTPUT

Number

500 mA maximum. Protected for overload or shorts. Shared by dual encoders. Ratings

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 3 of 32

controls Nano Plus-HP EtherCAT

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

SAFE TORQUE OFF (STO)

Function PWM outputs are inactive and the current to the motor will not be possible when the STO function is active.

SIL 3, Category 3, Performance level e (PL e)

Safety Integrity Level 2 two-terminal: STO_1, STO1_RTN, STO_2, STO2_RTN Inputs

Opto-isolators, 5V compatible Type

Connecting both STO inputs to +5V will deactivate the STO function. Disabling

STO_STĂTUS_OUTPUT STO status feedback, non-functional safety specified.

PROTECTIONS

 $+HV > +95 \pm 1 Vdc$ Drive outputs turn OFF until +HV is $< +95 \pm 1$ Vdc (90 V models). HV Overvoltage HV Undervoltage $+HV < +9.0 Vdc \pm 1 Vdc$ Drive outputs turn OFF until +HV is > +8.5 Vdc ± 0.5 Vdc (90 V models).

PC Board > 90 °C +3/-0 °C **Drive Over Temperature** Programmable as latching or temporary fault.

Short Circuits Output to output, output to ground, internal PWM bridge faults

I2T Current Limiting Programmable: continuous current, peak current, peak time for drive and motor

Latching / Non-Latching Programmable response to errors.

MECHANICAL & ENVIRONMENTAL

Size, Weight NEP-HP: 1.3 x 2.6 x 2.5 in [33 x 66 x 63.5 mm], 5.8 oz [164 q]

NEP-HP-Z: $1.44 \times 2.6 \times 2.5$ in [$36.5 \times 66 \times 63.5$ mm], 7.6 oz [215 g] Operating: 0 to +45 °C, Storage: -40 to +85 °C Ambient Temperature

Humidity 0 to 95%, non-condensing \leq 2000 m (6,562 ft) 2 g peak, 10~500 Hz (Sine) Altitude

Vibration Shock 10 g, 10 ms, half Sine pulse Contaminants Pollution Degree 2

AGENCY STANDARDS CONFORMANCE

Functional Safety

IEC 61508-1, IEC 61508-2, IEC 61508-3, (SIL 3)

Directive 2006/42/EC (Machinery) ISO 13849-1 (Cat 3, PL e) IEC 61800-5-2 (SIL 3)

Product Safety

Directive 2014/35/EU (Low Voltage)

IEC 61800-5-1

FMC.

Directive 2014/30/EU (EMC)

IEC 61800-3

Restriction of the Use of Certain Hazardous Substances (RoHS) Directive 2011/65/EU and its amendments 2015/863/EU

UL recognized component to:

UL 61800-5-1, UL 61800-5-2 IEC 61800-5-1, IEC 61800-5-2 FUNCTIONAL

ISO 13849-1 Up to PL e (Cat.3) IEC 61800-5-2 Up to SIL 3

RoHS Directive 2011/65/EU is now part of the CE marking procedure.

Tel: 781-828-8090

DANGER

Refer to the Copley NANOPIUS High Power User Guide, (Part Number: 16-140881).

For information on any application using the NANO Plus High Power drive STO feature, refer to the Copley NANOPlus High Power User Guide (PN: 16-140881).

Failure to heed this warning can cause equipment damage, injury, or death.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Fax: 781-828-6547

Page 4 of 32

ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

User Mounting Board J1 NEP-HP EtherCAT Magnetics ECATTX1+ ECATTX1-J1 FCATRX1+ ECATRX1-**RJ-45** ECATTX2+ **J**4 ECATTX2-8 = +3.3V_TxRx2 ECATRX2+ ECATRX2-/// Chassis

Data protocol is CANopen application protocol over EtherCAT (CoE) based on CiA 402 for motion control devices. For more information on EtherCAT, refer to the web-site: https://ethercat.org.

NETWORK RJ45

IN Name	Pin	OUT Name	
ECATTX1+	1	ECATTX2+	
ECATTX1-	2	ECATTX2-	
ECATRX1+	3	ECATRX2+	
D/C	4	D/C	
R/C	5	R/C	
ECATRX1-	6	ECATRX2-	
D/C	7	D/C	
R/C	8	R/C	

DRIVE J1

Signal	Pin
ECATTX1+	27
ECATTX1-	29
+3.3V_TXRX1	19
ECATRX1+	24
ECATRX1-	26
ECATTX2+	23
ECATTX2-	25
+3.3V_TXRX2	21
ECATRX2+	20
ECATRX2-	22

RS-232 COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type In the following diagram, the circuit shown is used on the -Z boards. that operates from 9,600 to 230,400 Baud. Use the Copley software to program the setup for the drive configuration or to setup the external equipment to send ASCII commands.

User Mounting Board

0.1UF

0.1UF

4

It is recommended for the user's PC boards. It converts the singleended TTL signals levels in the NEP-HP into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports

RS-232 PORT

Signal	Pins
RS232RX	2
RS232TX	5
SGND	3,4

DRIVE J1		0.1UF C1- 12 NEP-HP J1
Signal	Pins	+6.6V TO -6.6V
ASYNC_RXD1	28	C2- 10k 3.3V
ASYNC_TXD1	30	9 RIN R R ROUT 2 ASYNC_RXD ASYNC_RXD1 RD
SGND	40	RS232RX 74LVC14 74LVC14 3 ASYNC_TXD ASYNC_TXD ASYNC_TXD
		RS232TX 8 TOUT \longrightarrow T TIN 3 ASYNC_TXD ASYNC_TXD1 74LVC14
		PADDLE GND SGND SGND
		13 6 3.3V

+3.3V

+3.3V TO +6.6V

RS232 TRANSCEIVER

0.1UF

ADM3101E

C1

Refer to NANO NEP-HP Reference Designs & Drawings.

Do not use 5V RS232 logic with module 3.3V logic RxD and TxD. Use ANSI RS232 Transceiver logic RS232RX and RS232TX.

Tel: 781-828-8090

Fax: 781-828-6547

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware or associated hardware components. When the opto-couplers are energized (for example, the current is flowing in the input diodes), the control core is enabled to control the On/OFF state of the PWM outputs to produce torque in the motor.

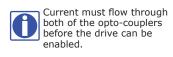
INSTALLATION

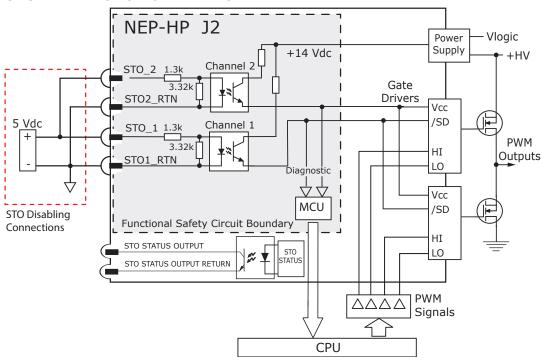
DANGER

Refer to the Copley NANOPlus High Power User Guide, (Part Number: 16-140881).

For information on any application using the NANO Plus High Power drive STO feature, refer to the Copley NANOPlus High Power User Guide (PN: 16-140881).

Failure to heed this warning can cause equipment damage, injury, or death.


STO DISABLE


To activate the PWM outputs of the NEP-HP, the current must be In the diagram, it shows connections that will energize flowing through the opto-couplers that are connected to the STO_1 and STO_2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are Off, the drive is in a Safe by the control core to drive a motor.

both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. Torque OFF (STO) state and the PWM outputs cannot be activated If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

FUNCTIONAL DIAGRAM

Tel: 781-828-8090

J2 STO

Name	Pin		Name
STO_1	1	2	STO1_RTN
STO_2	3	4	STO2_RTN
STO1_STATUS_OUTPUT	5	6	STO1_STATUS_OUTPUT_RTN

STO OPERATION

STO Input Voltage	STO State	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 <i>OR</i> STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 Open	To Active. Drive carriot be enabled to produce torque.	

Note: In the above table, the voltages are referenced between a STO_x and a STOx_RTN.

For example, V(STO1) = V(STO_1) - V(STO1_RTN)

The maximum voltage allowed for the STO inputs are 7.0 VDC.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

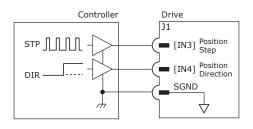
Fax: 781-828-6547 Page 6 of 32

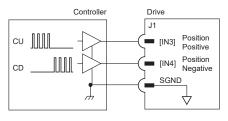
controls Nano Plus-HP EtherCAT PCF NEP-HP

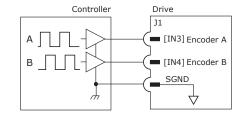
DIGITAL COMMAND INPUTS: POSITION

STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

The NEP-HP works with the motion controllers to send output pulses to the command position. The following formats are supported:


- Step/Direction
 - In Step/Direction mode, a pulse-train controls motor position, and the direction is controlled by a DC level at the Direction input.
- Count-Up/Count-Down (CU/CD)
- CU/CD (Count-Up/Count-Down) signals command the motor to move CW or CCW depending on to which input the pulse-train is directed.
- A/B Quadrature Encoder


In the A/B Quadrature Encoder mode, the motor can be operated in an electronic gearing mode by connecting the inputs to a Quadrature Encoder on another motor. In all cases, the ratio between input pulses and motor revolutions is programmable.

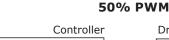

STEP/DIRECTION INPUTS

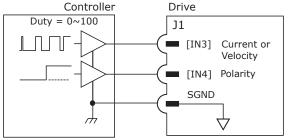
COUNT-UP/COUNT-DOWN INPUTS

QUAD A/B ENCODER INPUTS

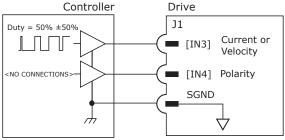
Command Options	Name	J 1 Pins
Step, Count Up, Encoder A	IN3	7
Direction, Count Down, Encoder B	IN4	8

J1 SGND Pins			
3,4,18,3	9,40,44,45,56,57		


DIGITAL COMMAND INPUTS: VELOCITY, TORQUE


STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

The NEP-HP works with the motion controllers to send send output pulses to the command Velocity or Torque. The following formats are supported:


- Pulse/Direction
 - In Pulse/Direction mode, a pulse-train with variable duty cycle on IN3 controls Velocity or Torque from 0~100%.
- -IN4 HI or LO controls the direction of the Velocity or polarity of the Torque.
- - In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.
- -Increasing the duty cycle to 100% commands positive Velocity/Torque.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Name	J 1 Pins
PWM Vel/Trq, PWM Vel/Trq & Direction	IN3	7
PWM/Dir Polarity, (none)	IN4	8

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 7 of 32

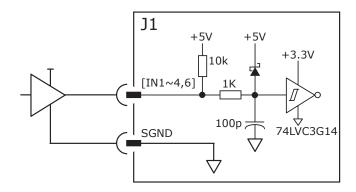
HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN6, IN7

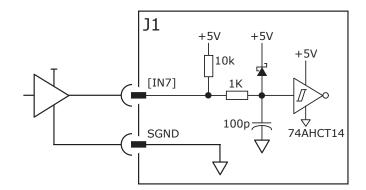
The seven digital inputs to the NEP-HP can be programmed to a selection of functions. All inputs include the following:

- 100 ns RC filters when they are driven by the active sources (CMOS, TTL, etc.).
- 10 k Ω pull-up resistors to +5 Vdc.

INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide


Inputs IN1~4, and IN6 have 100 nanosecond rise time RC filters, each input with a 10 k Ω pull-up resistor to +5 VDC.


In addition to the selection of functions, the active level for each input is individually programmable. Input level functions have programmable HI or LO to activate the function. Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- · Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

IN7 has the same input network, but the interface IC is a 74AHCT14BQ powered with 5.0~Vdc.

SPECIFICATIONS

Input	Data	Notes
Input		
	HI	$V_{T} + \ge 1.42 \sim 2.38 \text{ Vdc}$
Input Voltages	LO	$V_{T}^{-} \le 0.70 \sim 1.44 \text{ Vdc}$
IN1~4,6	Max	+6 Vdc
	Min	0 Vdc
Input Voltage IN7	HI	V _T + ≥ 2.00 Vdc
	LO	V __ - ≤ 0.55 Vdc
	Max	+6 Vdc
	Min	0 Vdc
Pull-Up	R1	10 kΩ
Low Pass Filter	R2	1 kΩ
	C1	100 pF
	RC	100 ns

CONNECTIONS

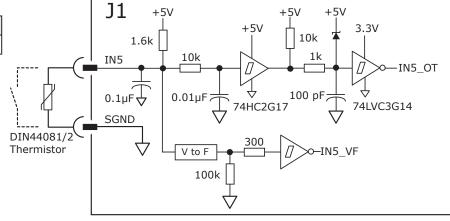
Name	J 1 Pins	
IN1	5	
IN2	6	
IN3	7	
IN4	8	
IN6	10	
IN7	11	

J1 SGND Pins	
3,4,18,39,40,44,45,56,57	

For information on Adapting 24V logic to 5V logic, consult the Factory.

5V logic. Do not exceed 6V. Do not connect a 24V logic to this input. Refer to page 24 that shows the circuit for 24V inputs.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 8 of 32


MOTOR OVERTEMP INPUT: IN5

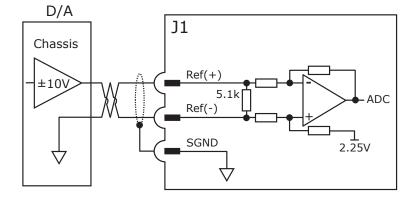
Input IN5 has a 100 microsecond rise time RC filter, with a 1.6 k Ω pull-up resistor to +5 VDC. If it is not used for the Motemp function, IN5 can be re-programmed for other input functions. The input network is the default used for a DIN44081/2 type PTC thermistor mounted in a motor.

IN5_VF has a voltage-to-frequency [V to F] converter. It connects to the FPGA where the frequency decodes to a voltage. By using this converter, it can be configured to work with thermistors to protect motors and/or loads. Use the Copley software to select the input to be used for the motor overtemp protection.

CONNECTIONS

Signal	J 1 Pins
IN5	9

ANALOG INPUT: AIN1


As a reference input, the AIN1 takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

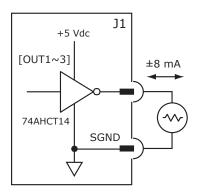
Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

Signal	J 1 Pins
Ref(+)	2
Ref(-)	1
AGND	3

If it is not used as a command input, it can be used as generalpurpose analog input.

DIGITAL OUTPUTS: OUT1~OUT3

Digital outputs [OUT1~3] are CMOS inverters. They operate from +5V and can source/sink 8 mAdc.


In the following diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when they are active.

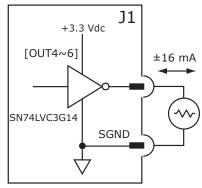
OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control
- Brake Control

Name	J1 Pins
OUT1	13
OUT2	12
OUT3	15

J1 SGND Pins
3,4,18,39,40,44,45,56,57

DIGITAL OUTPUTS: OUT4~OUT6


Digital outputs [OUT4 \sim 6] are CMOS inverters. They operate +3.3V and can source/sink 16 mAdc.

OUTPUT FUNCTIONS

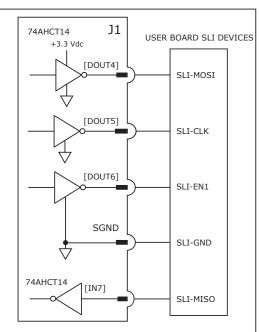
- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

Name	J 1 Pins
OUT4	14
OUT5	17
OUT6	16

In the following diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when it is active.

SLI: DOUT4, DOUT5, DOUT6, IN7

The three outputs and one input operate as an SLI (Switch and LED Interface) port for controlling LEDs and reading the settings of the network address switches. In the following diagram, it shows the outputs/input in the SLI mode.


If they are not used for SLI, they are programmable for other functions to turn the output On (HI) or OFF (LO) when they are active. [IN7] is shown in the diagram as part of the SLI function.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

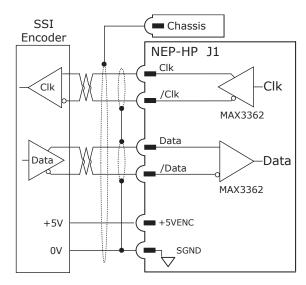
J1 SGND Pins		
3,4,18,39,40,44,45,56,57		

SLI Port	Signal	J 1 Pins
SLI-MOSI	DOUT4	14
SLI-CLK	DOUT5	17
SLI-EN1	DOUT6	16
SLI-GND	SGND	18
SLI-MISO	IN7	11

ENCODER 1 (PRIMARY FEEDBACK)

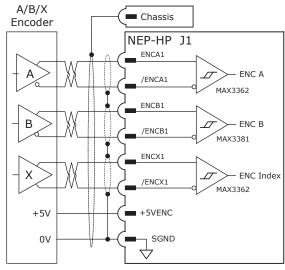
QUAD ENCODER WITH INDEX

A/B/X SIGNALS


Signal	J 1 Pins	
ENCA1	51	
/ENCA1	50	
ENCB1	53	
/ENCB1	52	
ENCX1	55	
/ENCX1	54	
+5VENC	64, 66	
SGND	56,57	

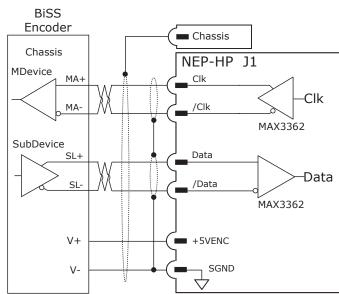
J1 SGND Pins
3,4,18,39,40,44,45,56,57

SSI ABSOLUTE ENCODER


The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system.

The NEP-HP drive provides a train of clock signals in differential format that are sent to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI. BISS SIGNALS


001, 5:00 010:0:120			
SSI	BiSS	Signal	J 1 Pins
Clk	MA+	ENCX1	55
/Clk	MA-	/ENCX1	54
Data	SL+	ENCA1	51
/Data	SL-	/ENCA1	50
+5VENC			64,66
SGND		56,57	

BISS ABSOLUTE ENCODER

BiSS is an Open Source - Digital Interface used for sensors and actuators. BiSS refers to the principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with the following additional options.

- Serial Synchronous Data Communication
- Cyclic at high speed
- 2 Unidirectional Lines Clock and Data
- -Line delay compensation for high speed data transfer
- -Request for data generation at slaves
- -Safety capable: CRC, Errors, Warnings
- -Bus capability including actuators
- Bidirectional
- -BiSS C-protocol: Continuous mode

Note: Connect single (outer) shields at the drive end. Connect inner shields to the Signal Ground on the drive.

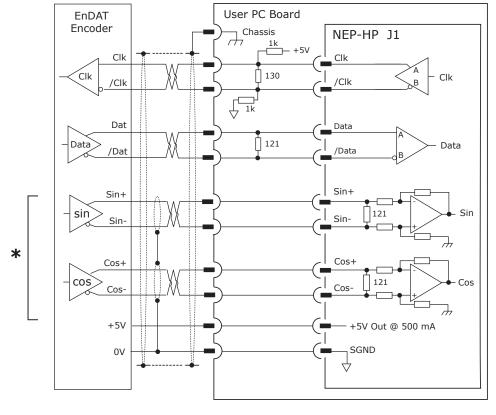
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 11 of 32

controls Nano Plus-HP EtherCAT PCF NEP-HP

ENCODER 1 (PRIMARY FEEDBACK)

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that functions similar to SSI in the use of clock and data signals. In addition, it supports analog Sin/Cos channels from the same encoder.


The number of position data bits are programmable and so are the use of Sin/Cos channels. In the EnDat specification, using the Sin/ Cos incremental signals is optional.

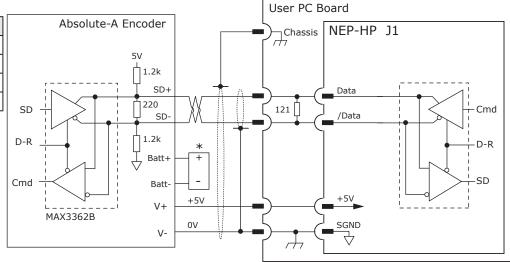
ENDAT SIGNALS

EnDAT	Signal	J 1 Pins
Clk	ENCX1	55
/Clk	/ENCX1	54
Data	ENCA1	51
/Data	/ENCA1	50
Sin+*	SIN1+	46
Sin-*	SIN1-	47
Cos+*	COS1+	48
Cos-*	COS1-	49
+5V	+5ENC	64,66

*Note: In the EnDAT column, the Sin/Cos is optional with EnDat 2.2 or any 1 Mbit or faster. If EnDat 2.1 < 1 Mbit, EnDat Sin/Cos is required.

J1 Signal Ground Pins
3,4,18,39,40,44,45,56,57

ABSOLUTE-A ENCODER


The Absolute A interface is a serial, half-duplex type that is electrically the same as the RS-485.

Note the battery which must be connected. Without the battery, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

ABS-A	Signal	J 1 Pins
Data	ENCA1	51
/Data	/ENCA1	50
+5V	+5ENC	64,66
GND	SGND	56,57

- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A

Note: Signal (outer) shields should be connected at the drive end. The inner shield is optional for digital encoders and should only be connected to Signal Ground on the drive.

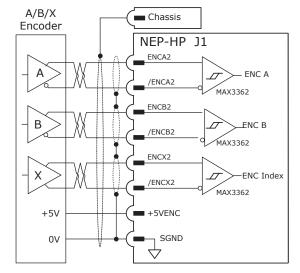
Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Fax: 781-828-6547 Page 12 of 32

ENCODER 2 (SECONDARY FEEDBACK)

QUAD ENCODER WITH INDEX


In the following diagram, it shows the secondary encoder connections.

A/B/X SIGNALS

Signal	J1 Pins
ENCA2	59
/ENCA2	58
ENCB2	61
/ENCB2	60
ENCX2	63
/ENCX2	62
+5VENC	64, 66

J1 SGND Pins
3,4,18,39,40,44,45,56,57

The tables identify the signals and pins.

ABSOLUTE ENCODERS

Secondary Feedback: Absolute

- Half-Duplex: Absolute A Encoders (2-wire)
 The A Channel first transmists a Clock signal and then switches to a receiver to receive data originating from the encoder.
- Full-Duplex: SSI, BiSS, EnDat Encoders (4-wire)
 The X Channel sends the Clock signal to the encoder which initiates the data transmission to the A-Channel.

Feedback Options

Quad Encoder A, Half-Duplex CLK-DATA, Full-Duplex DATA

Quad Encoder /A, Half-Duplex /CLK-DATA, Full-Duplex /DATA

Quad Encoder B

Quad Encoder /B

Quad Encoder X, Full-Duplex CLOCK

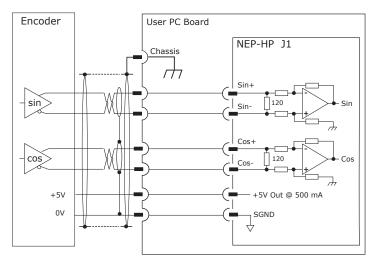
Quad Encoder /X, Full-Duplex /CLOCK

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Fax: 781-828-6547 Page 13 of 32

controls Nano Plus-HP EtherCAT PCF NEP-HP


SIN/COS ENCODER

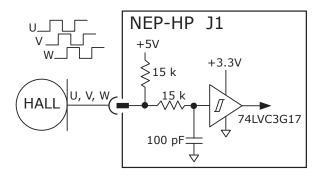
SIN/COS ENCODER

Sin/Cos sensors in linear brushless motors are produced from the magnetic field in the rod and provide commutation feedback as well as higher resolution position feedback by interpolating of the signals.

Signal	J1 Pins
SIN1+	46
SIN1-	47
COS1+	48
COS1-	49
+5VENC	64, 66
SGND	56, 57

Incremental rotary encoders are also available with Sin/Cos outputs. Programmable interpolation enables the number of counts per revolution or linear movement to be programmable.

OTHER MOTOR CONNECTIONS

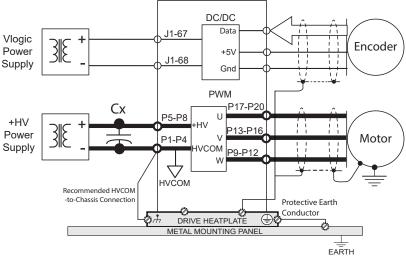

HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without

HALL SIGNALS

Signal	J 1 Pins
HALLU	41
HALLV	42
HALLW	43

an encoder. When they are used with the incremental encoders, they enable the motor to operate without a phase-finding cycle.


+HV CONNECTIONS

POWER SUPPLIES

The drive main power, +HV is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV power supply connects to P5~P8. For good wiring practice, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. Doing this ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise. During deceleration, mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as

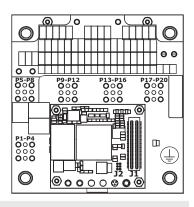
While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply. An external storage capacitor should be used if the load has appreciable inertia. It should be sized such that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and HVCOM terminals.

the motor comes to a stop.

GROUNDING

The P1 \sim P4 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current.

The labeled mounting hole provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.


P1~P20

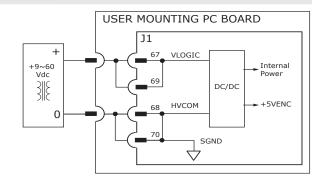
Signal	Pins
HVCOM	P1~P4
+HV	P5~P8
MOTW	P9~P12
MOTV	P13~P16
MOTU	P17~P20
Chassis	*

GROUND

Tel: 781-828-8090

*Note: The mounting holes are connected to one another and to Chassis Ground. The mounting hole marked with the PE symbol is the connection point for the protective earth conductor.

VLOGIC CONNECTIONS


DESCRIPTION

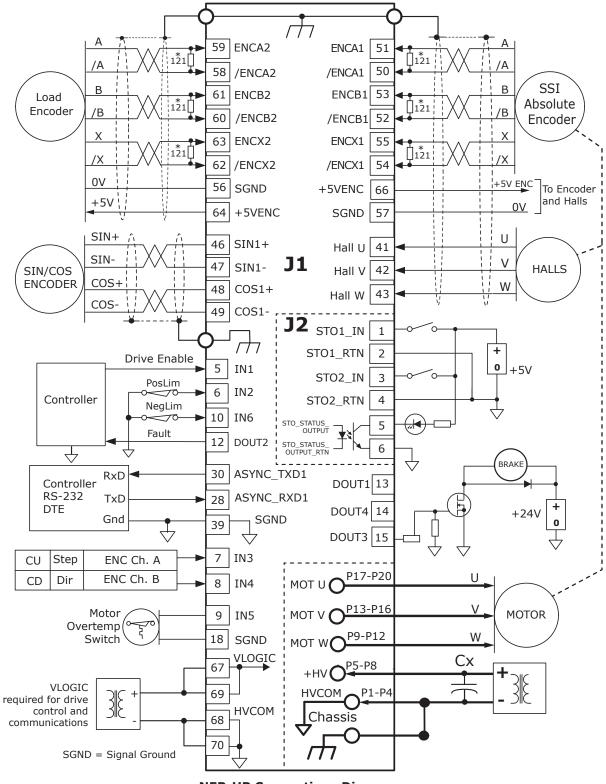
VLOGIC is required for the operation of the drive. It powers the internal logic and the control circuits. Encoder +5V is derived from VLOGIC.

When the STO feature is used, VLOGIC must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

J1 VLOGIC

Name	P	in	Name
VLOGIC	67	68	HVCOM
VLOGIC	69	70	HVCOM

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.


VLOGIC $+9\sim60.24V$ power is recommended. If common to HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

NEP-HP TYPICAL CONNECTIONS

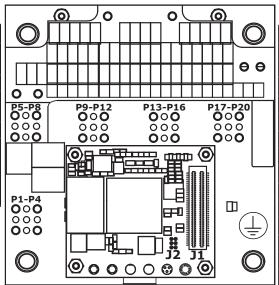
The following diagram shows the NEP-HP connections and identifies the pins and signals.

NEP-HP Connections Diagram

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Fax: 781-828-6547 Page 16 of 32


PC BOARD CONNECTIONS

The following diagram shows the topside view of the pins and signals pointed downwards towards the PC user mounting board.

P1~P20

Signal	Pins
HVCOM	P1~P4
+HV	P5~P8
MOTW	P9~P12
MOTV	P13~P16
MOTU	P17~P20
Chassis	*
alian i mel	

*Note: The mounting holes are connected to one another and to Chassis Ground. The mounting hole marked with the PE symbol is the connection point for the protective earth conductor.

NEP-HP Module Board Connections Diagram

J**2 STO**

Name	Pin		Name
STO1_RTN	2	1	STO_1
STO2_RTN	4	3	STO_2
STO_STATUS_OUTPUT_RTN	6	5	STO_STATUS_OUTPUT

J1 SIGNAL

Signal Pin Signal					
Signal			Signal		
REFIN1-	1	2	REFIN1+		
SGND	3	4	SGND		
[ENABLE] IN1	5	6	IN2		
IN3	7	8	IN4		
IN5	9	10	IN6		
IN7	11	12	DOUT2		
DOUT1	13	14	DOUT4		
DOUT3	15	16	DOUT6		
DOUT5	17	18	SGND		
+3.3V_TXRX1	19	20	ECATRX2+		
+3.3V_TXRX2	21	22	ECATRX2-		
ECATTX2+	23	24	ECATRX1+		
ECATTX2-	25	26	ECATRX1-		
ECATTX1+	27	28	ASYNC_RXD1		
ECATTX1-	29	30	ASYNC_TXD1		
CAN_RX	31	32	ASYNC_RXD2		
CAN_TX	33	34	ASYNC_TXD2		
HSTL_0P	35	36	HSTL_1P		
HSTL_0N	37	38	HSTL_1N		
SGND	39	40	SGND		
HALLU	41	42	HALLV		
HALLW	43	44	SGND		
SGND	45	46	SIN1+		
SIN1-	47	48	COS1+		
COS1-	49	50	/ENCA1		
ENCA1	51	52	/ENCB1		
ENCB1	53	54	/ENCX1		
ENCX1	55	56	SGND		
SGND	57	58	/ENCA2		
ENCA2	59	60	/ENCB2		
ENCB2	61	62	/ENCX2		
ENCX2	63	64	+5VENC		
N.C.	65	66	+5VENC		
VLOGIC	67	68	HVCOM		
VLOGIC	69	70	HVCOM		
*Note: In the Signal column, the asterisk indicates					

do not connect to these pins. Consult the factory for AN146: IDC Inter-Drive Communication.

Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S070-022G3R02	Header, 70 pos, 0.5 mm pitch	1
J2	ST0	WCON	2521-203MG3CUNR1	Header, 6 pos, 1 mm pitch	1

*Note: The Part Number column indicates the parts that require the purchase of reels for those components. Refer to the following vendor to contact for approved value-added partner Action Electronics.

Action Electronics, Inc. Walpole, MA 02081-2522-US Phone: (508) 668-5621

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 17 of 32

DIMENSIONS

NEP-HP MODULE

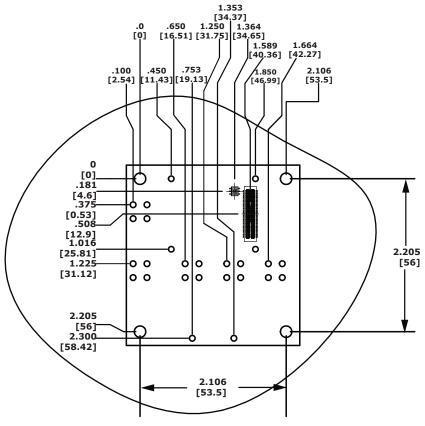
The following diagram shows the NEP-HP module dimensions.

The dimensions are measured in inches [in] and millimeters [mm].

NEP-HP Module Dimensions Diagram

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Tel: 781-828-8090 Fax: 781-828-6547 Page 18 of 32



DIMENSIONS

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the topside view of the user mounting PC board for the drive.

The STO (J2) connector is mounted on the underside of the PC board. The topside view shows the clearance holes for the STO connector mating pins.

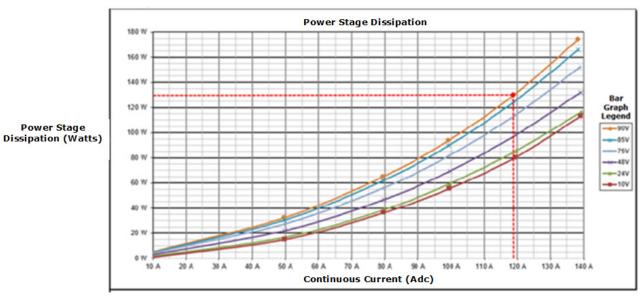
PC User Mounting Board Dimensions (Bottom View)

Notes:

- 1. The J2 Connector is not shown in the above diagram, because it is located on the far side of the PCB. The CL dimension for the connector body is shown with the 6 access holes used for the header pins so that they can pass through the customer board. Then, mate to the connector.
- 2. To determine the copper width and thickness for P1~P20 signals, refer to specification IPC-2221. (Association Connecting Electronic Industries, https://www.ipc.org)
- For maximum noise suppression and immunity, connect the standoffs to etches on the PC board that connects to the chassis.
- 4. The Nano Plus High Power Module drives do not emit noise above 70 dB(A) when they are mounted and operating.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

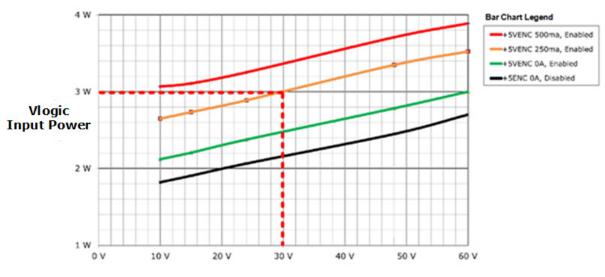
Fax: 781-828-6547 Page 19 of 32



THERMALS: PWM OUTPUTS DISSIPATION

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.

For example in the chart, the red dotted line show a power dissipation of 130 W at a continuous current of 119 Adc and +HV = 90 VDC.



Power Stage Dissipation Chart

VLOGIC/VOLTAGE

In the chart below, it shows the power dissipation in the Vlogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive.

In the chart, the dotted lines show a dissipation of 3.0 W. at Vlogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

Vlogic Voltage Chart

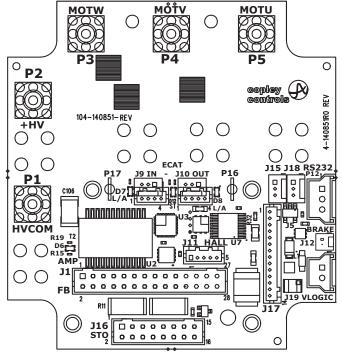
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 20 of 32

controls Nano Plus-HP EtherCAT PCF NEP-HP

NEP-HP-Z

The NEP-HP-Z Board diagram shows the connections and board layout. The tables identify the signals and pins for each connector.

MODELS


NEP-090-80-C-Z NEP-090-140-C-Z

P1-P5

Signal	Pin
HVCOM	P1
+HV	P2
MOTW	Р3
MOTV	P4
MOTU	P5

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

NEP-HP-Z Connections Diagram

P16 SHIELD P17 SHIELD

Signal	Pin	Signal	Pin
SHLD	1	SHLD	1

J 9	J9 ECAT		ECAT
IN	Pin	OUT	Pin
RX1+	1	RX2+	1
RX1-	2	RX2-	2
TX1+	3	TX2+	3
TX1-	4	TX2-	4

P12 RS-232

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

J19 VLOGIC

Signal	Pin
VLOGIC	2
HVCOM	1

J**16 STO**

Signal	Р	in	Signal
STO1_24V_IN	2	1	STO1_RTN
STO_1	4	3	STO1_RTN
N.C.	6	5	N.C.
STO2_24V_IN	8	7	STO2_RTN
STO_2	10	9	STO2_RTN
N.C.	12	11	N.C.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_ OUTPUT

J1 I/O

Signal	Pin		Signal
/ENCA2	2	1	Chassis
ENCA2	4	3	SGND
IN1_24V	6	5	+5VENC
IN2_24V	8	7	+5VENC
IN3	10	9	/ENCB2
IN4	12	11	ENCB2
IN5 (MOTEMP)	14	13	SGND
IN6 (ENC_FAULT)	16	15	/ENCX2
IN7 (SLI_MISO)	18	17	ENCX2
SGND	20	19	REFIN1-
DOUT1	22	21	REFIN1+
DOUT2	24	23	SGND
DOUT3 (BRAKE OFF)	26	25	DOUT6 (SLI_EN1)
DOUT4 (SLI_MOSI)	28	27	DOUT5 (SLI_CLK)

J17 ENCODER 1

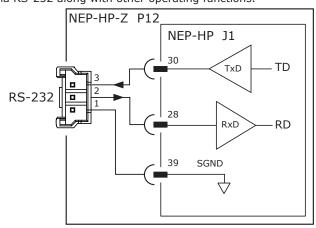
Signal	Pin
+5VENC	1
SGND	2
/ENCA1	3
ENCA1	4
/ENCB1	5
ENCB1	6
/ENCX1	7
ENCX1	8
IN5	9
SGND	10
COS1+	11
COS1-	12
SIN1+	13
SIN1-	14

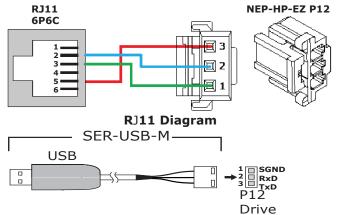
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 21 of 32

NEP-HP-Z: P12 RS-232

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or it is used for the configuration before it is installed into an EtherCAT network.


P12 RS-232

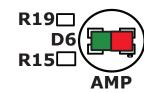

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

The RJ-11 socket (6P6C) is compatible with the existing serial-data cables. It can be done using an RJ-11 socket (6P6C) wired with a compatible serial-data cable as shown in the RJ11 Diagram. Molex: 42410-6170 Modular Jack, 6 terminals, size 6

Copley offers a SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NEP-HP-Z serial port.

The Copley software communicates with the drive over this link. It is then used for the complete drive setup. The EtherCAT Device ID is set via RS-232 along with other operating functions.

NEP-HP-Z: DRIVE STATUS LED (AMP)


DRIVE STATUS LED (AMP)

A bi-color LED "AMP" displays the state of the drive. Colors do not alternate and can be solid On or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table is shown.

Cable 15 5110 WIII		
LED	Condition Description	
RED/BLINKING	Latching fault. Operation can not resume until the drive is Reset.	
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.	
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.	
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by the limit switch.	
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or EtherCAT commands.	

LATCHING FAULTS

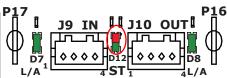
Default	Optional (Programmable)
Short Circuit (Internal or External)	Over-voltage
Drive Over-temperature	Under-voltage
Motor Over-temperature	Motor Phasing Error
Feedback Error	Command Input Fault
Following Error	Motor Wiring Disconnected
	Over Current (Latched)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 22 of 32

NEP-HP-Z: J9~J10 ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

ETHERCAT CONNECTIONS


J9 & J10 accept the Ethernet cables. The IN port connects to a master, or it connects to the OUT port of a device that is 'upstream', between the Nano and the master.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on DSP-402 for motion control devices. For additional information on EtherCAT, refer to the web-site: https://ethercat.org.

The OUT port connects to 'downstream' nodes. If the drive is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

ETHERCAT STATUS LED

RUN		ERR		
GREEN shows the state of the ESM (EtherCAT State Machine).		RED shows errors such as watchdog timeouts and unsolicited state changes in the drive due to local errors.		
Off	= Init State	Off	= EtherCAT communications are working correctly.	
BLINKING	= Pre-operational	BLINKING	= Invalid configuration, general configuration error	
SINGLE FLASH	= Safe-Operational	SINGLE FLASH	= Local error, slave has changed EtherCAT state autonomously	
On	= Operational	Double Flash	= PDO or EtherCAT watchdog timeout, or an application watchdog timeout has occurred.	

L/A (LINK/ACT)

Green indicates the state of the EtherCAT network.

LED	Link	Activity	Condition
On	Yes	No	= Port Open
FLICKERING	YES	YES	= Port Open with Activity
Off	No	(N/A)	= Port Closed

ETHERCAT DEVICE ID

In an EtherCAT network, slaves are automatically assigned fixed addresses based on their position on the bus. Stations on EtherCAT are automatically addressed by their bus location. The first drive on the network is station address -1. The second drive is station address -2, and so forth.

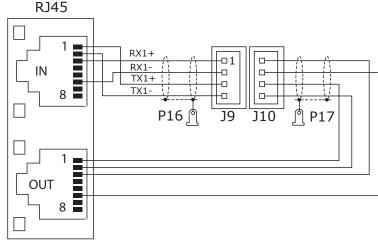
ETHERCAT CONNECTORS

In the following RJ45 diagram, it shows the connections to the EZ Board that use the standard RJ45 recepticals for their

When a device is required to have a positive identification that is independent of cabling, a Device ID is needed. This Device ID can be set using the digital inputs or set with a programmed value. Use the Copley software to configure both of these modes.

network connections. The tables identify the pins and signals for each connector.

RJ45


Signal	Pins
TX1+	1
TX1-	2
RX1+	3
N.C.	4
N.C.	5
RX1-	6
N.C.	7
N.C.	8

J10 ECAT-OUT

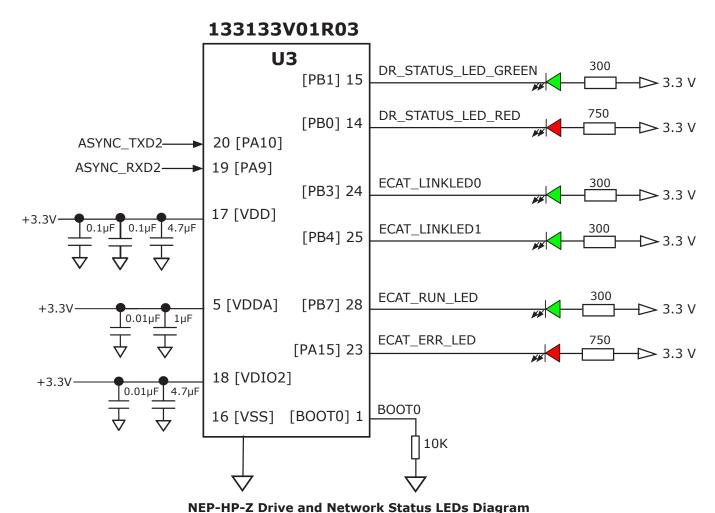
Pin	Signal
1	RX2+
2	RX2-
3	TX2+
4	TX2-

J9 ECAT-IN

Pin	Signal
1	RX1+
2	RX1-
3	TX1+
4	TX1-

RJ45 Diagram

Note: Use the P16 & P17 for shields in the J9 and J10 EtherCAT cables.



NEP-HP-Z: DRIVE AND NETWORK STATUS LEDS

The microprocessor chip uses the serial port with ASYNC TXD2 and ASYNC RXD2 to drive LEDs.

- DR STATUS LED X signals drive the AMP STATUS LED.
- ECAT XXX LED shows the network status of the drive communication.
- ECAT LINKLEDx signals show the presence of activity on the ECAT connections.

In the following diagram, it shows the NEP-HP-Z drive and the network status LEDs.

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

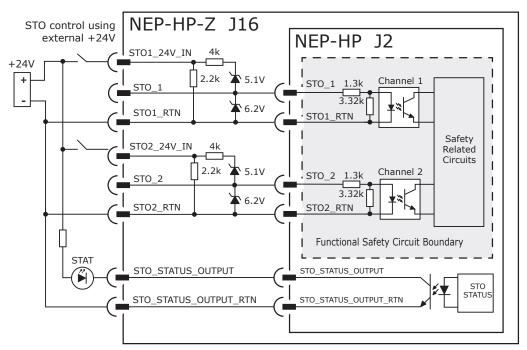
Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
133133V01R03 Arrow Electronics Pre-programmed uC for Drive and Network Status LEDs.		

Note: For information on the STM32F042G4U6TR electrical, pinout and package details, refer to the product: STM32F042G4U6TR Datasheet. The datasheet is posted on the ST Microelectronics website: https://www.st.com.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 24 of 32



NEP-HP-Z: J16 SAFE TOROUE OFF [STO]

DESCRIPTION

In the following diagram, it shows the use of an external 24V to Both STO inputs must be energized in order to enable the drive. energize the STO inputs.

NEP-HP-Z J16 STO Diagram

Note: In the diagram, the +24V shown can be driven from the VLOGIC power supply. The STOX 24V IN circuits can tolerate the +60V limit of the VLOGIC input. The STO_x maximum voltage limits are +7.0 Vdc.

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	1	1	1

In the STAT-OUT Operation table, the following describes the

- STO1 & STO2 rows, 1 = 24V. It is applied between the IN-24V and RTN. 0 = open-circuit.
- In the STAT row, 1 = the optocoupler is ON, 0 =the optocoupler is Off.
- STAT output is On (True) when both STO1 & STO2 are energized. allowing the drive to be enabled and to produce torque.

J**16 STO**

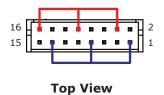
Signal	Р	in	Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO_1
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO_2
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5V

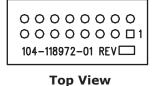
STO OPERATION

STO Input Voltage	STO State	
STO1_24V_IN AND STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc		
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5.0 Vdc		
STO_1 <i>OR</i> STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torq	
STO_1 OR STO_2 Open		

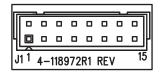
Note: In the above table, the voltages are referenced between a STO_x and a STOx_RTN in J16 For example, V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)

Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 25 of 32





NEP-HP-Z: J16 SAFE TOROUE OFF (STO) BYPASS


The Bypassing function is used when the user does not require the STO function. The STO-Bypass has jumpers that use the +5VENC to energize the STO inputs.

This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The following diagrams show the STO-Bypass top and bottom views.

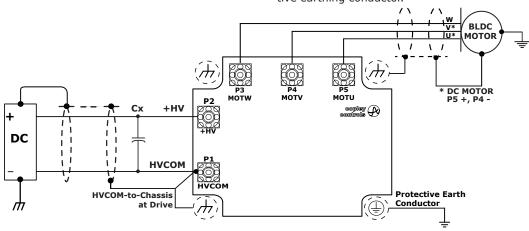
Bottom View

NEP-HP-Z: +HV & MOTOR CONNECTIONS

+HV

The +HV power supply outputs connect to terminal P2. HVCOM connects to terminal P1. An overall cable shield for the +HV/HVCOM pair is necessary to meet EMC requirements. As shown, this shield connects to the chassis ground at the power supply end and to chassis ground at the drive end. To minimize electrical noise, Copley recommends that the user connect the negative (-, HVCOM) terminal of the power supply with a short, direct path to the drive chassis ground located close to the drive.

MOTOR


P5, P4 and P3 are used for the motor windings U, V and W respectively. Motor cables typically have one wire for each of the three phases and a fourth wire for connecting the motor housing to protective earth. The protective earth conductor wire color is commonly GREEN with a YELLOW stripe. This user must connect this protective earthing conductor to a suitable protective earth connection point which is most often found on the frame of the machine into which the drive and motor are mounted

Protective Earth

The Nano Plus High Power drives are Protective Class I equipment relating to protection against electric shock. Accordingly, the drives have both basic insulation between circuits and accessible conductive parts and offer a method of connecting a protective earthing conductor to prevent accessible conductive parts (the heatplate for example) from becoming 'hazardous live' in the event of a failure of the basic insulation. The PE symbol appears next to one of the four corner mounting holes on the module and identifies it as the connection point for the protective earthing conductor.

Chassis Ground Connections

The mounting holes other than the one specified as the Protective Earth connection point, are suitable connection points for connecting cable shields to Chassis Ground and for connecting the negative (-, HVCOM) power supply terminal to Chassis Ground.

NEP-HP-Z +HV & Motor Connections Diagram

Pin	Signal
P1	HVCOM
P2	+HV

Pin	Signal	
P3	Motor W	
P4	Motor V	
P5	Motor U	

Description	Data
Recommended Wire	2~4 AWG, 600 V, shielded cable required for CE compliance.
Recommended	#10 Ring Terminal, 4AWG Wire, Insulated

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 26 of 32

NEP-HP-Z: J12 BRAKE

J12 BRAKE:

The EZ board has components that can actuate a brake using pulse-width modulation, controlled by DOUT3.

The behavior is based on the following parameters, which can be set using the Copley software.

SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Pin	Signal
2	VLOGIC
1	BRAKE

Copley software default setting for Brake Output [DOUT3] is "Custom Brake Output."

"Active = Brake is holding motor shaft (i.e. the Brake is Active). Motor cannot move.

No current flows in coil of brake.

Copley software I/O Line States shows [DOUT3] as LO. BRK Output voltage is HI (24V), MOSFET Q2 is OFF.

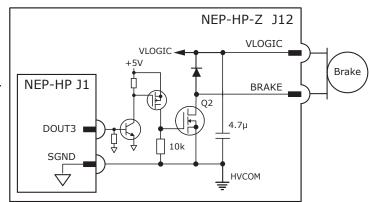
Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft

(i.e. the Brake is NOT-Active).

Motor can move.


Current flows in coil of brake.

Copley software I/O Line States shows [DOUT3] as HI. BRK output voltage is LO (~0V), MOSFET Q2 is On.

Servo drive is enabled, PWM outputs are On.

Servo drive output current is flowing.

Description
Applied to the brake by duty cycling OUT3 to the brake's rated voltage.
Sufficient time to open the brake after which, it switches to Holding Voltage.
A lower duty-cycled voltage that is adequate to hold the brake open without overheating.
16 KHz is the default and it is programmable.

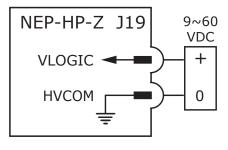
NEP-HP-Z: J19 VLOGIC

J19 VLOGIC:

The J19 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by the power supplies with the transformer isolation from the mains, PELV or SELV ratings, and provide a maximum output voltage of 60 Vdc.

If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

SPECIFICATIONS


Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Input Power	Тур	4 W
	Max	8 W

Note: The following are the input power values:

- Typical input power is no load on encoder +5V.
- Maximum input power is two encoders @ 250 mA each, and +5V at maximum.

J19 VLOGIC

Signal
VLOGIC
HVCOM

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

Vlogic +9~60. 24V power is recommended. If using a 24V Brake, 24V is required. If common to HV do not exceed 60V, use REGEN protection and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 27 of 32

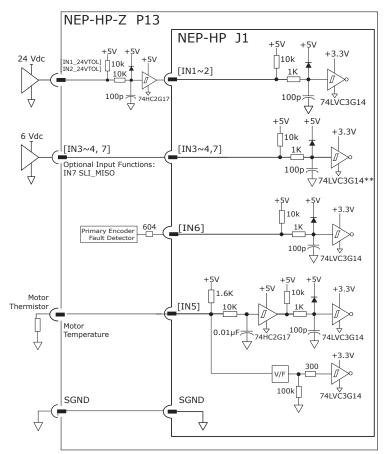
NEP-HP-Z: J1 INPUTS & OUTPUTS

- J1 has the following inputs and outputs:
- Digital Inputs 1~7
- Digital Outputs 1~6
- Analog Differential Input
- Secondary Quad A/B/X Encoder Input

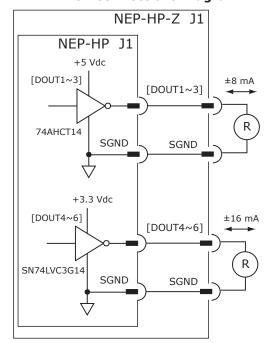
J1 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3	10
IN4	12
IN5 ¹	14
IN6	16
IN7 ²	18
+5 V	5,7
SGND	3,13,20,23

Notes:


- 1) For information on IN5, refer to page 9:Motor Overtemp Input IN5.
- 2) The gate on IN7 is 74AHCT14BQ powered with 5.0 Vdc.

J1 LOGIC OUTPUTS

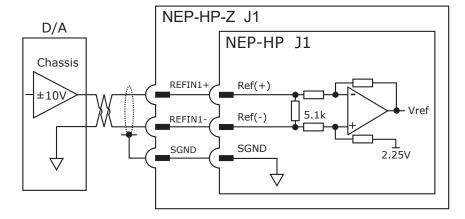

Signal	Pins
DOUT1 [OUT1]	22
DOUT2 [OUT2]	24
DOUT3 [BRAKE_OFF]	26
DOUT4 [SLI_MOSI]	28
DOUT5 [SLI_CLK]	27
DOUT6 [SLI_ENI]	25
SGND	3,13,20,23

The inputs and outputs are described as follows:

- IN1~2 are 24V compatible.
- IN3,4,5,7 are 6V tolerant.
- IN6 is dedicated to primary encoder fault detection.

NEP-HP-Z J1 Connections Diagram

NEP-HP-Z: J1 ANALOG INPUT

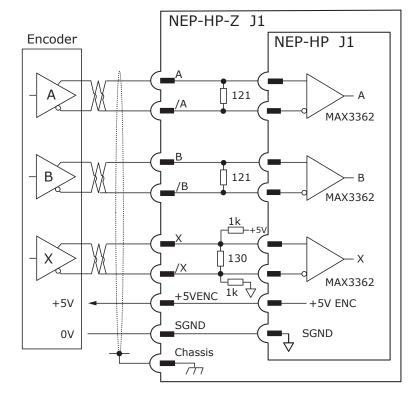

As a reference input, the J1 analog input takes Position/Velocity/ Torque commands from a controller.

If it is not used as a command input, it can be used as the general-purpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

Signal	J 1 Pins
Ref(+)	21
Ref(-)	19


NEP-HP-Z: J1 SECONDARY ENCODER

In the following diagram, it shows the NEP-HP-Z J1 secondary encoder connections. The table identifies the signal and pins for the J1 ENC2 inputs.

Use the secondary encoder when the load is not connected directly to the motor.

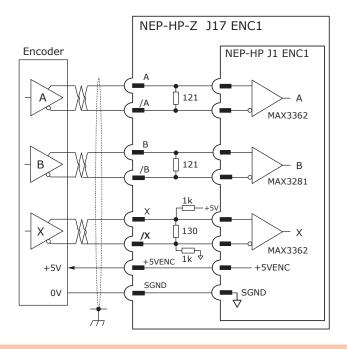
J1 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	11
/ENCB2 [/B]	9
ENCX2 [X]	17
/ENCX2 [/X]	15
+5VENC	5,7
SGND	3,13,20,23
Chassis	1

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-140917 Rev 00

Fax: 781-828-6547 Page 29 of 32

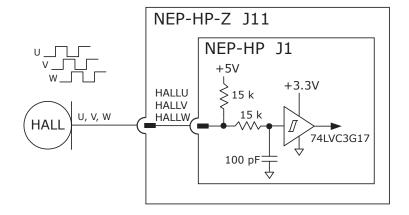

NEP-HP-Z: J17 PRIMARY ENCODER

 $\ensuremath{\mathsf{ENC1}}$ is the Motor encoder. It is used in the single-encoder applications.

J17 ENC1 INPUTS

Signal	Pins
ENCA1 [A]	4
/ENCA1 [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1 [X]	8
/ENCX1 [/X]	7
OVERTEMP_IN [IN5]	9
+5VENC	1
SGND	2,10

In the dual-encoder applications, it can be assigned as Primary or Secondary in the Copley software.

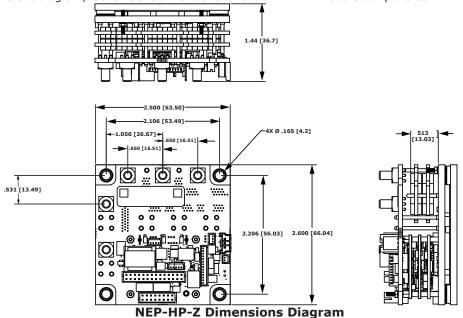

NEP-HP-Z: 311 HALLS

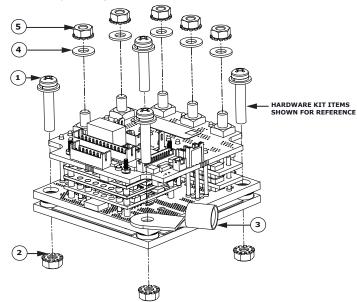
In the NEP-HP-Z, J11 diagram, it shows the Halls connections.

The table identifies the signal and pins for the J11 Hall Inputs.

J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1




NEP-HP-Z: MECHANICALS

In the NEP-HP-Z Dimensions diagram, it shows the dimensions for the NEP-HP-Z module components.

In the NEP-HP-Z Components Assembly diagram, it shows the location of the hardware parts on the drive. Use the screws to connect the nuts and washers to secure the parts together.

For information on the hardware kit components, type, size, manufacturer, part number and description, refer to the tables

NEP-HP-Z Mounting Assembly Diagram

The following table lists the item, quantity, description and manufacturing part numbers shipped with the drive.

N-HP-Z-MK: Nano and Nano Plus HP EZ Customer Assembly Hardware Kit

#	Item	Qty	Mfgr	Part Number	Description
1	Screw	4	Arnold Industries	1923NK	M4 SEMS screw, 20mm long, Phillips Pan Head
2	Nut	4	Arnold Industries	BN1364M4NK	M4 KEP Nut
3	Terminal Lug	6	Panduit Corporation	P4-10R-T	#10 Ring Terminal, 4AWG Wire, Non-Insulated

N-HP-Z-MK: Nano and Nano Plus HP EZ Customer Assembly Hardware Kit

14-1	N-IIF-2-Pik. Nano and Nano Flus IIF L2 Customer Assembly Hardware Kit				
#	Item	Qty	Mfgr	Part Number	Description
4	Washer	5	Bossard International	1215930	M4 Flat Washer, Brass Nickel
5	Nut	5	Arnold Industries	BN1364M4NK	M4 KEP Nut

Note: The items (4 & 5-nuts and washers) are assembled with the product. Use the assembly items 4 & 5 for the customer wire attachment connecting to the Power-In and Motor-Out terminals. If the customer requires additional parts, refer to the information for items 4 & 5.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 31 of 32

controls Nano Plus-HP EtherCAT PCF NEP-HP

ORDERING GUIDE

NEP-HP

Part Number	Description
NEP-090-80-C*	Nano ^{Plus} High Power Module EtherCAT NEP-HP servo drive, 80/80 A, 90 Vdc
NEP-090-80-C-Z	Nano ^{Plus} High Power Module soldered to EZ board EtherCAT, NEP-HP-Z servo drive, 80/80 A, 90 Vdc
NEP-090-140-C*	Nano ^{Plus} High Power Module EtherCAT NEP-HP servo drive, 140/140 A, 90 Vdc
NEP-090-140-C-Z	Nano ^{Plus} High Power Module soldered to EZ board EtherCAT, NEP-HP-Z servo drive, 140/140 A, 90 Vdc

^{*}Note: The NEP-HP units must be soldered directly to a mounting PCBA.

ACCESSORIES FOR NEP-HP

Part Number	Description	
N-HP-MK	Hardware Kit, Nano and Nano Plus HP MOD Customer Assembly	

ACCESSORIES FOR NEP-HP-Z

Part Number	Description	
NP-Z-CK	Connector Kit for Nano Plus HP	
N-HP-Z-MK	Hardware Kit, Nano and Nano Plus HP EZ Customer Assembly	
SER-USB-M	USB to 3-Pin Molex Adapter Cable	

CONNECTOR KIT FOR NANO PLUS HP

	Qty	Ref	Name	Description	MFGR Part Number
	1	J12	Brake	CONN WIRE-MT HSG SKT 1X2P 1.25MM LKG NYL BEIGE	Hirose: DF13-2S-1.25C
	2	J13, J14	CAN	CONN WIRE-MT HSG SKT 1X3P 1.25MM LKG NYL BEIGE	Hirose: DF13-3S-1.25C
	2	J9, J10	EtherCAT	CONN WIRE-MT HSG SKT 1X4P 1.25MM LKG NYL BEIGE	Hirose: DF13-4S-1.25C
	1	J11	Halls	CONN WIRE-MT HSG SKT 1X5P 1.25MM LKG NYL BEIGE	Hirose: DF13-5S-1.25C
	1	J17	Primary Feedback	CONN WIRE-MT HSG SKT 1X14P 1.25MM LKG NYL BEIGE	Hirose: DF13-14S-1.25C
	29	J9,J10,J11, J12,J13, J14,J17	DF13 pins	CONN CONTC SKT CRMP 30-26GA 1MM MAX INSUL DIA AU	Hirose: DF13-2630SCFA
	1	J16	STO STO	CONN WIRE-MT HSG RCPT 2X8P 2X2MM LKG NYL BLK	Hirose: DF11-16DS-2C
	1	J1	Secondary Feed- back, I/O	CONN WIRE-MT HSG RCPT 2X14P 2X2MM LKG NYL BLK	Hirose: DF11-28DS-2C
	44		DF11 pins	CONN CONTC SKT CRMP 28-24GA 1.45MM MAX INSUL DIA AU	Hirose: DF11-2428SCFA(04)
	1	J19	Vlogic	CONN WIRE-MT HSG RCPT 1X2P 2MM LKG POLYEST NAT	Molex: 35507-0200
	1	P12	RS-232	CONN WIRE-MT HSG RCPT 1X3P 2MM LKG POLYEST NAT	Molex: 35507-0300
NP-Z-CK	2	P16, P17	Cable Shields	FASTON RCPT .110X.020 26-22GA UNINSUL POSI- TIVE-LOCK PHBRZ/SN	TE: 353249-2
CONNECTOR KIT	4		DF13 Wires, Black	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H4BBG-10112-B6
	17		DF13 Wires, White	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H4BBG-10112-W6
	20		DF11 Wires, White	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H3BBG-10112-W6
	3		DF11 Wires, Red	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H3BBG-10112-R6
	3		DF13 Wires, Red	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H4BBG-10112-R6
	1		J19, HVCOM Wire, Black	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD BLK SN 12IN	Molex:0502128000-12-B4
	1		J19, +VLOGIC Wire, Red	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD RED SN 12IN	Molex:0502128000-12-R4
	3		DF11 Wires, Black	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H3BBG-10112-B6
	1		DF13 Brake Wire, Blue	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLU AU 12IN	Hirose:H4BBG-10112-L6
1	1	i	STO-Bypass PCB	BD ASSY, STO BYPASS BOARD	Copley: 104-118972-01

REVISION HISTORY

140017 Document Povision History

10-14091	16-140917 Document Revision History		
Revision	Date	Remarks	
00	July 15, 2025	Initial Release for Production	

Trademarks: CANopen® is a registered trademark of CAN in Automation, Panasonic™ is a trademark of Panasonic Corp., SAE J1939™ is trademark of SAE Int., Samtec is a trademark of Samtec Inc., Sanyo Denki™ is a trademark of Sanyo Denki Co., Ltd., Tamagawa™ is a trademark of Tamagawa Seiki Co., Ltd., ST Microelectronics™ is a trademark of ST Microelectronics, Inc.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-140917 Rev 00 Page 32 of 32