copley controls Nano Plus-HP CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

PCF Plus Common Features

- Virtual Multi-Axes with IDC
- Large CVM dRAM 64k
- Large Trace 16k

Control Modes

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- Interpolated Position (PT, PVT), Homing
- Indexer, Point-to-Point
- Camming, Gearing
- Position, Velocity, Torque
- Command Interface

CANopen

- ASCII, Serial Binary, and Discrete I/O
- Stepper or Quad A/B Position Commands
- PWM Position-Velocity-Torque Command
- Master Encoder (Gearing/Camming)
- ±10 V Position-Velocity-Torque

Communications

- CANopen
- RS-232

Feedback

- Dual Absolute BiSS, SSI, EnDat Absolute A Panasonic[™], Sanyo Denki[™], Tamagawa[™]
- Analog Sin/Cos Encoder
- Digital Quad A/B/X Encoder
- Secondary Encoder/Emulated Output
- Digital Halls

I/O

- 1 Analog Input ±10V, 16-bit
- 7 High-Speed Digital Inputs
- 6 High-Speed Digital Outputs
- High-Speed Pulse-at-Position
- SLI Support: DOUT4~6, IN7
- I/O Expansion

Safe Torque Off (STO)

- SIL 3, Category 3, PL e
- Dimensions: in [mm]
- NPP-HP: 1.3 x 2.6 x 2.5 in [33 x 66 x 63.5 mm], 5.8 oz [164 g]
- NPP-HP-Z:1.44 x 2.6 x 2.5 in [36.5 x 66 x 63.5 mm], 7.6 oz [215 g]

Description

The Nano^{Plus} High Power drive provides 100% digital control of brushless servo motors in a compact DC powered, modular package. The NPP-HP models operate as nodes used for transmitting data on a CAN nework. This drive complies with the requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries. The Nano has a third party approved STO feature. Opto-isolators provide connections to user wiring and controls.

NPP-HP

Model	Ic	Ip	VDC
NPP-090-80-C	80	80	9~90
NPP-090-140-C	140	140	9~90

NPP-HP-Z (Soldered to EZ Board)

Model	Ic	Ip	Vdc
NPP-090-80-C-Z	80	80	9~90
NPP-090-140-C-Z	140	140	9~90

The NPP-HP drive can be mounted to any of the following:

- directly on the motor or within the robotic joints
- the user PC boards using either connectors

soldered into the board

An optional interface board provides connectors which simplify the integration into customer applications.

PCF NPP-HP

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS Test conditions: Load = Wye connected lo	oad: 1 mH+ 1 Ω line	-line. Ambient te	mperature = 25 °C. +HV = HVmax.	
	IPP-090-80-C	NPP-090-14		
	PP-090-80-C-Z	NPP-090-140		
OUTPUT POWER				
Peak Current	80 (56.6)	140 (99.0)	Adc (Arms, sinusoidal)	
Peak Time Continuous Current	N/A 80 (56.6)	N/A	Sec	
Peak Output Power	4.7	140 (99.0) 8.3	Adc (Arms, sinusoidal) kW	
Continuous Output Power	4.7	8.3	kW	
*Noтe: For EZ packages, all Nano Plu	s HP modules are so	ldered into the E	Z board.	
NPUT POWER				
HVmin to HVmax	+9 to +90	+9 to +90	Vdc, transformer-isolated	
+HV Absolute Max. Ipeak	+95 50	+95 88	Vdc, transformer-isolated Adc	
Icont	50	88	Adc continuous	
VLOGIC	+9 to +60	+9 to +60	Vdc, transformer-isolated	
VLOGIC Absolute Max.	+60	+60	Vdc, transformer-isolated	
VLOGIC Power	4 W with no e	ncoder, 8 W with	encoder +5V @ 500 mA, VLOGIC @ 24 VDC output.	
PWM OUTPUTS				
Type DWM Bipple Frequency	MOSFET 3-phase ir 32 kHz	iverter, 16 kHz c	enter-weighted PWM carrier, space-vector modulation	
PWM Ripple Frequency Minimum Load Inductance	32 κHz 200 μH			
BANDWIDTH	200 pm			
Current Loop, Small Signal	2.5 kHz typical ha	ndwidth will vary	with tuning & load inductance.	
HV Compensation	Changes in HV do r			
Current Loop Update Rate	16 kHz (62.5 µs)			
Position & Velocity Loop Update Rate	4 kHz (250 µs)			
COMMAND INPUTS				
CANOPEN			ion/Velocity/Torque, Profile Position/Velocity/Torque,	
Stand-Alone Mode:	Interpolated Positic	on (PVI), Homin	g, Cyclic Synchronous Torque with Commutation Angle (CSTCA)	
Digital Position Reference	Pulse/Direction, CV	V/CCW Step	per commands (4 MHz maximum rate)	
-	Quad A/B Encoder		line/sec, 40 Mcount/sec (after quadrature)	
Digital Torque & Velocity Reference	PWM, Polarity $PWM = 0\% - 100\%$, Polarity = 1/0PWM 50% $PWM = 50\% \pm 50\%$, no polarity signal required.			
	PWM 50%PWM = 50% ±50%, no polarity signal required.PWM frequency range1 kHz minimum, 100 kHz maximum			
	PWM minimum pulse width 220 ns			
Indexing	Up to 32 sequences can be launched from inputs or ASCII commands.			
Camming	Up to 10 CAM tables can be stored in flash memory.			
ASCII	RS-232, 9600~230,400 Baud, 3-wire Current, Velocity, Profile Velocity, Position			
	Current, velocity, P	Tome velocity, P		
DIGITAL INPUTS NPP-HP Number	7			
IN1~4, 6	, General purpose in	puts		
			t trigger, 5V compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc,	
			Vdc positive-going threshold, 0.70~1.44 Vdc negative-going threshold	
	RC time-constant assumes active drive on inputs and does not include 10 k Ω pull-ups.			
IN5			W Schmitt trigger, 100 μ s RC filter, 1.6 kΩ pull-up to +5 Vdc, max. positive-going threshold, 1.25~2.20 Vdc negative-going threshold	
			for continuous signal acquisition.	
IN7			igger, 100 ns RC filter, 10 k Ω pull-up to +5V, max. voltage = +6 Vdc	
			old, 0.55 Vdc max. negative-going threshold	
	Programmable as S	SLI Function: SL	_MISO	
DIGITAL INPUTS NPP-HP-Z				
TN11 0		nmitt trigger, 24	compatible, 1 μs RC filter, 10 kΩ pull-up to +5 Vdc, max.	
IN1~2			positive-going threshold, 1.25~2.20 Vdc negative-going threshold	
IN1~2 IN3~4	High speed LVC CM	IOS 3.3V Schmit	t trigger, 5V compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc,	
	High speed LVC CM max. voltage = +6	10S 3.3V Schmit Vdc, 1.42~2.38		
IN3~4	High speed LVC CM max. voltage = +6 Motor overtempera max. voltage = +6	1OS 3.3V Schmit Vdc, 1.42~2.38 ature, LV CMOS 5 Vdc, 2.53~3.43	t trigger, $5V$ compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 0.70~1.44 Vdc negative-going threshold V Schmitt trigger, 100 µs RC filter, 1.6 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 1.25~2.20 Vdc negative-going threshold	
IN3~4 IN5	High speed LVC CM max. voltage = +6 Motor overtempera max. voltage = +6 Also connected to a	OS 3.3V Schmit Vdc, 1.42~2.38 ature, LV CMOS 5 Vdc, 2.53~3.43 an ADC channel	t trigger, $5V$ compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 0.70~1.44 Vdc negative-going threshold iV Schmitt trigger, 100 μ s RC filter, 1.6 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 1.25~2.20 Vdc negative-going threshold for continuous signal acquisition.	
IN3~4	High speed LVC CM max. voltage = +6 Motor overtempera max. voltage = +6 Also connected to a Not available as an	OS 3.3V Schmit Vdc, 1.42~2.38 ature, LV CMOS 5 Vdc, 2.53~3.43 an ADC channel i input. It is drive	t trigger, $5V$ compatible, 100 ns RC filter, 10 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 0.70~1.44 Vdc negative-going threshold V Schmitt trigger, 100 µs RC filter, 1.6 k Ω pull-up to +5 Vdc, Vdc positive-going threshold, 1.25~2.20 Vdc negative-going threshold	

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

DIGITAL OUTPUTS	6
Number	6 CMOS LE Vide invertere 4.00 kO null un to 3.3 Vide functions programmable
OUT1~3	CMOS +5 Vdc inverters, 4.99 k Ω pull-up to 3.3 Vdc, functions programmable Source -8 mA @ VOH > 3.94 Vdc, Sink 8 mA @ VOL < 0.36 Vdc
	- , -
OUT4~6	HS CMOS +3.3 Vdc inverters, functions programmable
	Source -16 mA @ VOH \geq 2.4 Vdc, Sink 16 mA @ VOL \leq 0.4 Vdc
	General purpose programmable or SLI functions: OUT4 = SLI_MOSI, OUT5 = SLI_CLK, OUT6 = SLI_EN1
ANALOG INPUT	
Number	1
Туре	Differential, ±10 Vdc range, 5.1 k Ω input impedance, 16 bits, single-pole, -3 dB @ 1450 Hz input filter
Function	Torque, Velocity, Position command or as general purpose analog input
SERIAL COMMUNICATION PORT	
Signals	RS-232: RxD, TxD, SGND
Mode	Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 Baud
Protocol	ASCII or Binary format
	Non-isolated. Referenced to Signal Ground.
CANOPEN PORT	
Format	CAN_H, CAN_L, CAN_GND, 1 Mbit/sec maximum
Protocol	CANopen, CiA 402
Isolation	Galvanically isolated from drive circuits.
MOTOR CONNECTIONS	
Motor U,V,W	Drive outputs to 3-phase brushless motor, Wye or delta connected DC brush motors use outputs U & V.
	Minimum inductance: 200 µH line-line
Encoder	Digital encoders, incremental and absolute (See FEEDBACK below).
	Analog Sin/Cos incremental
Halls	Digital U/V/W, 120°
Motemp	Input is programmable to disable the drive if the motor sensor drives input HI or LO.
FEEDBACK	
Incremental Encoders:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).
	5 MHz maximum line frequency (20 Hz counts/sec)
	1 kΩ pull-up on (+), 1 kΩ pull-down on (-) input
	VT+ = 1.2~2.0 Vdc min., VT- = 0.8~1.5 Vdc max., VH = 0.3 ~ 1.2 Vdc
Analog Incremental Encoder	Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20%
	BW $>$ 300 kHz, 16-bit resolution, with zero-crossing detection
Absolute Encoders:	
EnDat, SSI, CSR	Serial Clock (X, /X), and Data (A, /A) signals
Absolute A	SD+, SD- (A, /A) signals, 2.5 or 4 MHz, half-duplex, 32 bit
BiSS	MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder.
Terminators	All encoder data inputs and clock outputs are differential and require external terminators.
Commutation	Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k $\Omega/100$ pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc
Encoder Power	+5 Vdc $\pm 2\%$ @ 250 mAdc max., shared by dual encoders.
HALLS	
Digital U-V-W	Single-ended, 120° electrical phase difference
	Schmitt trigger, 1.5 μ s RC filter from active HI/LO sources, 5 Vdc compatible
	$15 \text{ k}\Omega$ pull-up to +5 Vdc, 74LVC, 3.3 V thresholds
5V OUTPUT	
	2
Number Ratings	z 500 mA maximum. Protected for overload or shorts. Shared by dual encoders.

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

SAFE TORQUE OFF (STO) Function Safety Integrity Level Inputs	PWM outputs are inactive and t SIL 3, Category 3, Performance 2 two-terminal: STO_1, STO1_	e level e (PL e)	ossible when the STO function is active.	
Type Disabling	Opto-isolators, 5V compatible Connecting both STO inputs to	+5V will deactivate the STO function		
STO_STATUS_OUTPUT	STO status feedback, non-func	tional safety specified.		
PROTECTIONS				
HV Overvoltage	$+HV > +95 \pm 1 Vdc$	Drive outputs turn OFF until +HV is		
HV Undervoltage	$+HV < +9.0 Vdc \pm 1 Vdc$		s > +8.5 Vdc ±0.5 Vdc (90 V models).	
Drive Over Temperature	PC Board > 90 °C +3/-0 °C	Programmable as latching or temp	orary fault.	
Short Circuits		Output to output, output to ground, internal PWM bridge faults		
I ² T Current Limiting		rent, peak current, peak time for driv	e and motor	
Latching / Non-Latching	Programmable response to erro	ors.		
MECHANICAL & ENVIRONMENT	AL			
Size, Weight		3 x 66 x 63.5 mm], 5.8 oz [164 g] [36.5 x 66 x 63.5 mm], 7.6 oz [215 g]	
Ambient Temperature	Operating: 0 to +45 °C, Storage	ge: -40 to +85 °C		
Humidity	0 to 95%, non-condensing			
Altitude	≤ 2000 m (6,562 ft)			
Vibration	2 g peak, 10~500 Hz (Sine)			
Shock Contaminants	10 g, 10 ms, half Sine pulse Pollution Degree 2			
	5			
AGENCY STANDARDS CONFOR	MANCE			
Functional Safety				
	8-2, IEC 61508-3, (SIL 3)			
Directive 2006/42/EC (Machi	,,,			
ISO 13849-1 (Cat 3, PL				
IEC 61800-5-2 (SIL 3)		FUNCTIONAL		
Product Safety		SAFETY		
Directive 2014/35/EU (Low	Voltage)	JALLII	ISO 13849-1	
IEC 61800-5-1			Up to PL e (Cat.3)	
EMC			IEC 61800-5-2	
Directive 2014/30/EU (EMC)			Up to SIL 3	
IEC 61800-3		RoHS Directive 2011/65/EU is now par	rt of the CE marking procedure	
Restriction of the Use of Certain H Directive 2011/65/EU and its		CONS Directive 2011/05/EU is now pai	t of the CE marking procedure.	
Approvals				
UL recognized component to				
UL 61800-5-1, UL 6180	0-5-2			
IEC 61800-5-1, IEC 618				

Refer to the Refer to the Copley NANOPlus High Power User Guide, (Part Number: 16-140881).

For information on any application using the NANO Plus High Power drive STO feature, refer to the Copley NANO^{Plus} High Power User Guide (PN: 16-140881).

SER | Failure to heed this warning can cause equipment damage, injury, or death.

PCF NPP-HP

and command synchronization. The result offers a highly effective

combination of data-rate and low costs for the multi-axis motion

control systems. Device synchronization enables multiple axes to

coordinate moves as if they were driven from a single control card.

A maximum of 127 CAN nodes are allowed on a single CAN bus.

Up to six digital inputs can be used to produce CAN Node-IDs from

1~63, or the Node-ID can be saved to the flash memory in the

module. Node-ID 0 is reserved for the CANopen master on the

If there are multiple NPP-HP devices on the mounting PCB, then

the terminating resistor should be near the NPP-HP that is farthest

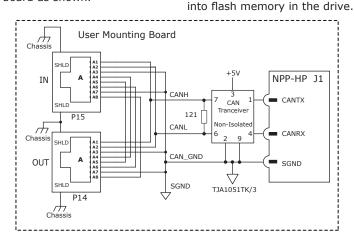
from the CAN network connection to the PCB. The node Node-ID

of the NPP-HP may be set by using digital inputs, or programmed

CANOPEN COMMUNICATIONS

CANOPEN

CANopen is the communication protocol based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential. CANopen adds support for motion-control devices

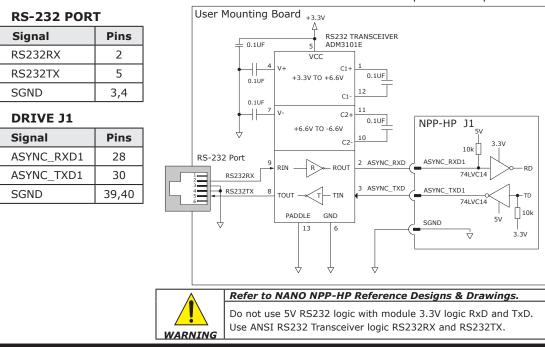

CANOPEN COMMUNICATION

NPP-HP uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address).

CANOPEN COMMAND INPUTS

In the following diagram, it shows connections between the NPP-HP and RJ45 connectors on the NPP-HP. If the NPP-HP is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown.

Signal	J1 Pins
CANTX	33
CANRX	31
SGND	39,40



network.

RS-232 COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud. Use the Copley software to program the setup for the drive configuration or to setup the external equipment to send ASCII commands.

In the following diagram, the circuit shown is used on the -Z boards. It is recommended for the user's PC boards. It converts the single-ended TTL signals levels in the NPP-HP into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware or associated hardware components. When the opto-couplers are energized (for example, the current is flowing in the input diodes), the control core is enabled to control the ON/OFF state of the PWM outputs to produce torque in the motor.

INSTALLATION

 Refer to the Copley NANOPlus High Power User Guide, (Part Number: 16-140881).

 For information on any application using the NANO Plus High Power drive STO feature, refer to the Copley NANOPlus High Power User Guide (PN: 16-140881).

ER | Failure to heed this warning can cause equipment damage, injury, or death.

STO DISABLE

To activate the PWM outputs of the NPP-HP, the current must be flowing through the opto-couplers that are connected to the STO_1 and STO_2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

In the diagram, it shows connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS FUNCTIONAL DIAGRAM NPP-HP J2 Vlogic Power Supply +14 Vdc +HV Channel 2 STO_2 1.3k Current must flow through both of the opto-couplers Gate 3.32k before the drive can be STO2_RTN Drivers enabled. Vcc /SD 5 Vdc Channel 1 STO 1 1.3k + PWM 3.32 ΗĪ Outputs STO1 RTN LO Diagnostic ∇ \dot{a} Vcc MCU /SD STO Disabling Functional Safety Circuit Boundary Connections 1 ΗI STO STATUS OUTPUT STO 10 STATUS STO STATUS OUTPUT RETURN PWM $\Delta \Delta \Delta \Delta$ Signals J2 STO CPU Name Pin Name STO 1 2 STO1 RTN 1 STO 2 3 4 STO2_RTN 5 STO1_STATUS_OUTPUT 6 STO1_STATUS_OUTPUT_RTN **STO OPERATION**

STO Input Voltage	STO State	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 OR STO_2 \leq 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 Open		

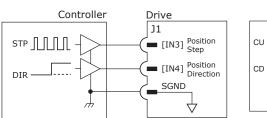
NOTE: In the above table, the voltages are referenced between a STO_x and a STOx_RTN.

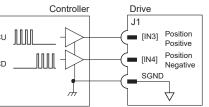
For example, V(STO1) = V(STO_1) - V(STO1_RTN)

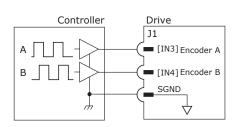
The maximum voltage allowed for the STO inputs are 7.0 VDC.

copley (Nano Plus-HP CANopen controls

DIGITAL COMMAND INPUTS: POSITION


STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS


The NPP-HP works with the motion controllers to send output pulses to the command position. The following formats are supported: Step/Direction


- In Step/Direction mode, a pulse-train controls motor position, and the direction is controlled by a DC level at the Direction input. Count-Up/Count-Down (CU/CD)
- CU/CD (Count-Up/Count-Down) signals command the motor to move CW or CCW depending on to which input the pulse-train is directed.
- A/B Ouadrature Encoder

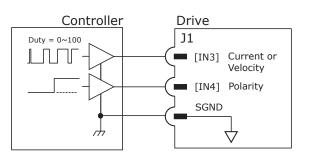
In the A/B Quadrature Encoder mode, the motor can be operated in an electronic gearing mode by connecting the inputs to a Quadrature Encoder on another motor. In all cases, the ratio between input pulses and motor revolutions is programmable. **COUNT-UP/COUNT-DOWN INPUTS QUAD A/B ENCODER INPUTS**

STEP/DIRECTION INPUTS

3,

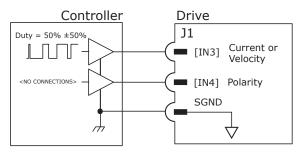
Command Options J1 Pins Name Step, Count Up, Encoder A IN3 7 Direction, Count Down, Encoder B IN4 8

,45,56,57


DIGITAL COMMAND INPUTS: VELOCITY, TOROUE

STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

The NPP-HP works with the motion controllers to send output pulses to the command Velocity or Torque. The following formats are supported:


- Pulse/Direction
- In Pulse/Direction mode, a pulse-train with variable duty cycle on IN3 controls Velocity or Torque from 0~100%.
- -IN4 HI or LO controls the direction of the Velocity or polarity of the Torque.
- PWM 50%
- In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.
- -Increasing the duty cycle to 100% commands positive Velocity/Torgue.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Name	J1 Pins
PWM Vel/Trq, PWM Vel/Trq & Direction	IN3	7
PWM/Dir Polarity, (none)	IN4	8

50% PWM

PCF NPP-HP

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN6, IN7

The seven digital inputs to the NPP-HP can be programmed to a selection of functions. All inputs include the following:

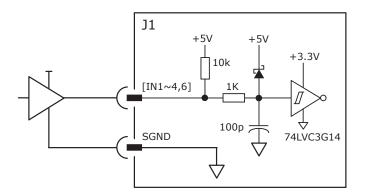
- \bullet 100 ns RC filters when they are driven by the active sources (CMOS, TTL, etc.).
- 10 k Ω pull-up resistors to +5 Vdc.

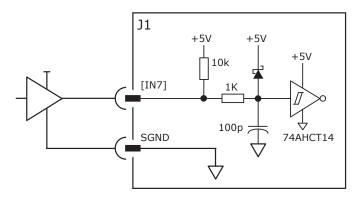
INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync

copley

- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide


Inputs IN1~4, and IN6 have 100 nanosecond rise time RC filters, each input with a 10 k $_\Omega$ pull-up resistor to +5 VDC.


In addition to the selection of functions, the active level for each input is individually programmable. Input level functions have programmable HI or LO to activate the function. Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

IN7 has the same input network, but the interface IC is a 74AHCT14BQ powered with 5.0 Vdc.

SPECIFICATIONS

Input	Data	Notes	
	HI	V _⊤ + ≥ 1.42~2.38 Vdc	
Input Voltages	LO	$V_{T}^{-} \le 0.70 \sim 1.44 \text{ Vdc}$	
IN1~4,6	Max	+6 Vdc	
	Min	0 Vdc	
	HI	$V_{T} + \ge 2.00 \text{ Vdc}$	
Input Voltage	LO	$V_{T}^{-} \leq 0.55 \text{ Vdc}$	
IN7	Max	+6 Vdc	
	Min	0 Vdc	
Pull-Up	R1	10 kΩ	
	R2	1 kΩ	
Low Pass Filter	C1	100 pF	
	RC	100 ns	

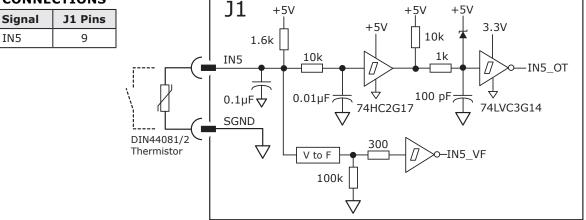
CONNECTIONS

J1 Pins 5 6
-
6
-
7
8
10
11

J1 SGND Pins 3,4,18,39,40,44,45,56,57

For information on Adapting 24V logic to 5V logic, consult the Factory.

5V logic. Do not exceed 6V. Do not connect a 24V logic to this input. Refer to page 24 that shows the circuit for 24V inputs.

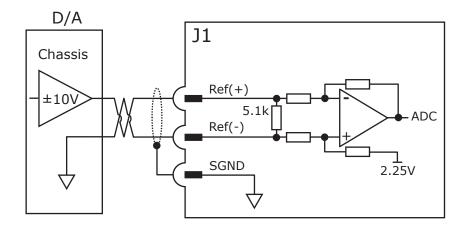


MOTOR OVERTEMP INPUT: IN5

Input IN5 has a 100 microsecond rise time RC filter, with a 1.6 k Ω pull-up resistor to +5 VDC. If it is not used for the Motemp function, IN5 can be re-programmed for other input functions. The input network is the default used for a DIN44081/2 type PTC thermistor mounted in a motor.

IN5_VF has a voltage-to-frequency [V to F] converter. It connects to the FPGA where the frequency decodes to a voltage. By using this converter, it can be configured to work with thermistors to protect motors and/or loads. Use the Copley software to select the input to be used for the motor overtemp protection.

CONNECTIONS


ANALOG INPUT: AIN1

As a reference input, the AIN1 takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

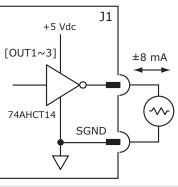
Signal	J1 Pins
Ref(+)	2
Ref(-)	1
AGND	3

If it is not used as a command input, it can be used as generalpurpose analog input.

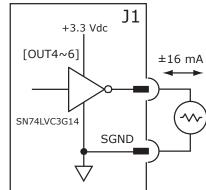
copley controls Nano Plus-HP CANopen

Digital outputs [OUT1~3] are CMOS inverters. They operate from +5V and can source/sink 8 mAdc.

OUTPUT FUNCTIONS


- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control
- Brake Control

Signal	J1 Pins
OUT1	13
OUT2	12
OUT3	15


J1 SGND Pins 3.4.18.39.40.44.45.56.57

In the following diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when they are active.

PCF NPP-HP

In the following diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when it is active.

If they are not used for SLI, they are programmable for other

functions to turn the output ON (HI) or OFF (LO) when they are

DIGITAL OUTPUTS: OUT4~OUT6

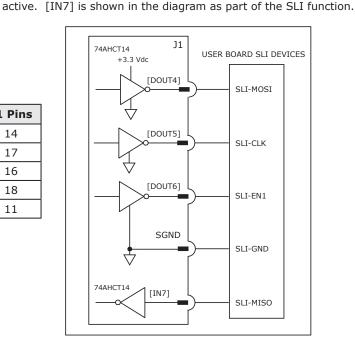
Digital outputs [OUT4~6] are CMOS inverters. They operate +3.3V and can source/sink 16 mAdc.

OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

Name	J1 Pins
OUT4	14
OUT5	17
OUT6	16

SLI: DOUT4, DOUT5, DOUT6, IN7


The three outputs and one input operate as an SLI (Switch and LED Interface) port for controlling LEDs and reading the settings of the network address switches. In the following diagram, it shows the outputs/input in the SLI mode.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

J1 SGND Pins
3,4,18,39,40,44,45,56,57

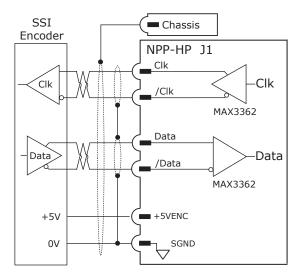
SLI PORT	Signal	J1 Pins
SLI-MOSI	DOUT4	14
SLI-CLK	DOUT5	17
SLI-EN1	DOUT6	16
SLI-GND	SGND	18
SLI-MISO	IN7	11

copley controls Nano Plus-HP CANopen

ENCODER 1 (PRIMARY FEEDBACK)

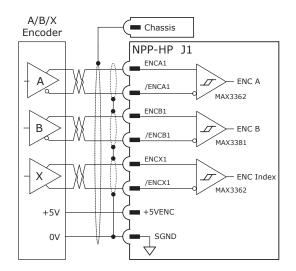
QUAD ENCODER WITH INDEX

A/B/X SIGNALS


Signal	J1 Pins	
ENCA1	51	
/ENCA1	50	
ENCB1	53	
/ENCB1	52	
ENCX1	55	
/ENCX1	54	
+5VENC	64, 66	
SGND	56,57	
J1 SGND Pins		

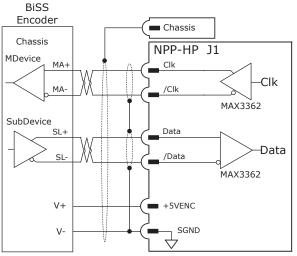
3,4,18,39,40,44,45,56,57

SSI ABSOLUTE ENCODER


The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system.

The NPP-HP drive provides a train of clock signals in differential format that are sent to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI, BISS SIGNALS


SSI	BiSS	Signal	J1 Pins
Clk	MA+	ENCX1	55
/Clk	MA-	/ENCX1	54
Data	SL+	ENCA1	51
/Data	SL-	/ENCA1	50
+5VENC		64,66	
SGND		56,57	

BISS ABSOLUTE ENCODER

BiSS is an Open Source - Digital Interface used for sensors and actuators. BiSS refers to the principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface[®] and Interbus[®] with the following additional options.

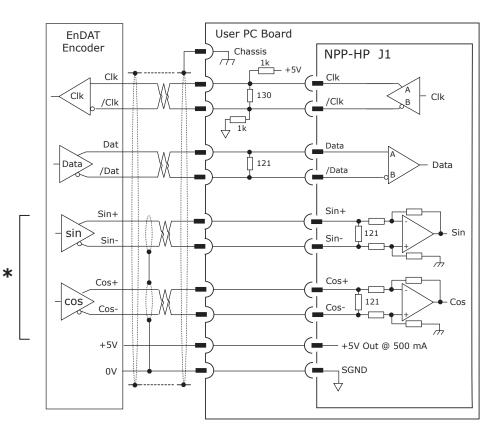
- Serial Synchronous Data Communication
- Cyclic at high speed
- 2 Unidirectional Lines Clock and Data -Line delay compensation for high speed data transfer -Request for data generation at slaves
- -Safety capable: CRC, Errors, Warnings
- -Bus capability including actuators
- Bidirectional
 - -BiSS C-protocol: Continuous mode

Note: Connect single (outer) shields at the drive end. Connect inner shields to the Signal Ground on the drive.

ENCODER 1 (PRIMARY FEEDBACK)

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that functions similar to SSI in the use of clock and data signals. In addition, it supports analog Sin/Cos channels from the same encoder.


The number of position data bits are programmable and so are the use of Sin/Cos channels. In the EnDat specification, using the Sin/Cos incremental signals is optional.

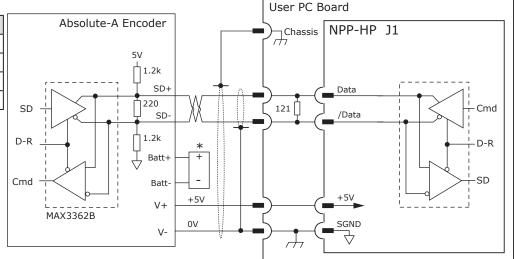
ENDAT SIGNALS

EnDAT	Signal	J1 Pins
Clk	ENCX1	55
/Clk	/ENCX1	54
Data	ENCA1	51
/Data	/ENCA1	50
Sin+*	SIN1+	46
Sin-*	SIN1-	47
Cos+*	COS1+	48
Cos-*	COS1-	49
+5V	+5ENC	64,66

*Note: In the EnDAT column, the Sin/Cos is optional with EnDat 2.2 or any 1 Mbit or faster. If EnDat 2.1 < 1 Mbit, EnDat Sin/Cos is required.

J1 Signal Ground Pins 3,4,18,39,40,44,45,56,57

ABSOLUTE-A ENCODER


The Absolute A interface is a serial, half-duplex type that is electrically the same as the RS-485.

Note the battery which must be connected. Without the battery, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

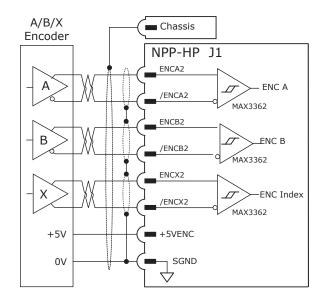
ABS-A	Signal	J1 Pins
Data	ENCA1	51
/Data	/ENCA1	50
+5V	+5ENC	64,66
GND	SGND	56,57

- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A

Note: Signal (outer) shields should be connected at the drive end. The inner shield is optional for digital encoders and should only be connected to Signal Ground on the drive.

ENCODER 2 (SECONDARY FEEDBACK)

QUAD ENCODER WITH INDEX


In the following diagram, it shows the secondary encoder connections.

A/B/X	SIG	NALS
		1

Signal	J1 Pins
ENCA2	59
/ENCA2	58
ENCB2	61
/ENCB2	60
ENCX2	63
/ENCX2	62
+5VENC	64, 66

J1 SGND Pins		
3,4,18,39,40,44,45,56,57		

The tables identify the signals and pins.

ABSOLUTE ENCODERS

Secondary Feedback: Absolute

- Half-Duplex: Absolute A Encoders (2-wire) The A Channel first transmists a Clock signal and then switches to a receiver to receive data originating from the encoder.
- Full-Duplex: SSI, BiSS, EnDat Encoders (4-wire) The X Channel sends the Clock signal to the encoder which initiates the data transmission to the A-Channel.

Feedback Options

Quad Encoder A, Half-Duplex CLK-DATA, Full-Duplex DATA

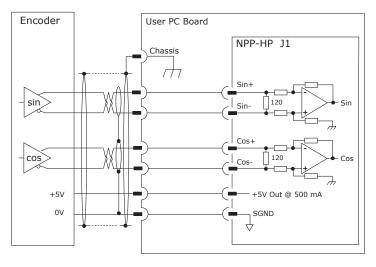
Quad Encoder /A, Half-Duplex /CLK-DATA, Full-Duplex /DATA

Quad Encoder B

Quad Encoder /B

Quad Encoder X, Full-Duplex CLOCK

Quad Encoder /X, Full-Duplex /CLOCK


SIN/COS ENCODER

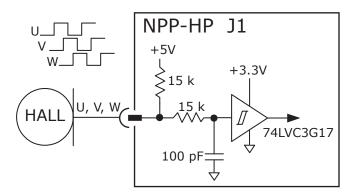
SIN/COS ENCODER

Sin/Cos sensors in linear brushless motors are produced from the magnetic field in the rod and provide commutation feedback as well as higher resolution position feedback by interpolating of the signals.

Signal	J1 Pins
SIN1+	46
SIN1-	47
COS1+	48
COS1-	49
+5VENC	64, 66
SGND	56, 57

Incremental rotary encoders are also available with Sin/Cos outputs. Programmable interpolation enables the number of counts per revolution or linear movement to be programmable.

OTHER MOTOR CONNECTIONS

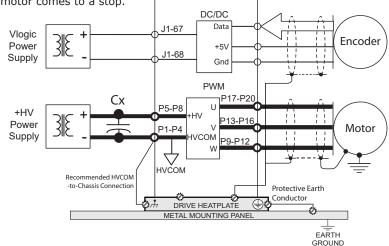

HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without an encoder.

HALL SIGNALS

Signal	J1 Pins
HALLU	41
HALLV	42
HALLW	43

When they are used with the incremental encoders, they enable the motor to operate without a phase-finding cycle.

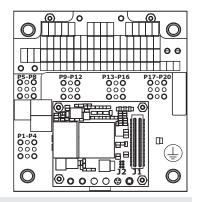


+HV CONNECTIONS

POWER SUPPLIES

The drive main power, +HV is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV power supply connects to P5~P8. For good wiring practice, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. Doing this ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise. During deceleration, mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop.

While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply. An external storage capacitor should be used if the load has appreciable inertia. It should be sized such that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and HVCOM terminals.


GROUNDING

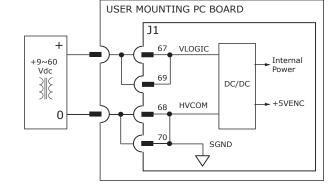
The P1~P4 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. The labeled mounting hole provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.

P1~P20

Signal	Pins
HVCOM	P1~P4
+HV	P5~P8
MOTW	P9~P12
MOTV	P13~P16
MOTU	P17~P20
Chassis	*
*Note: The mounting holes are connected to one another and to Chassis Ground. The mounting	

another and to Chassis Ground. The mounting hole marked with the PE symbol is the connection point for the protective earth conductor.

VLOGIC CONNECTIONS

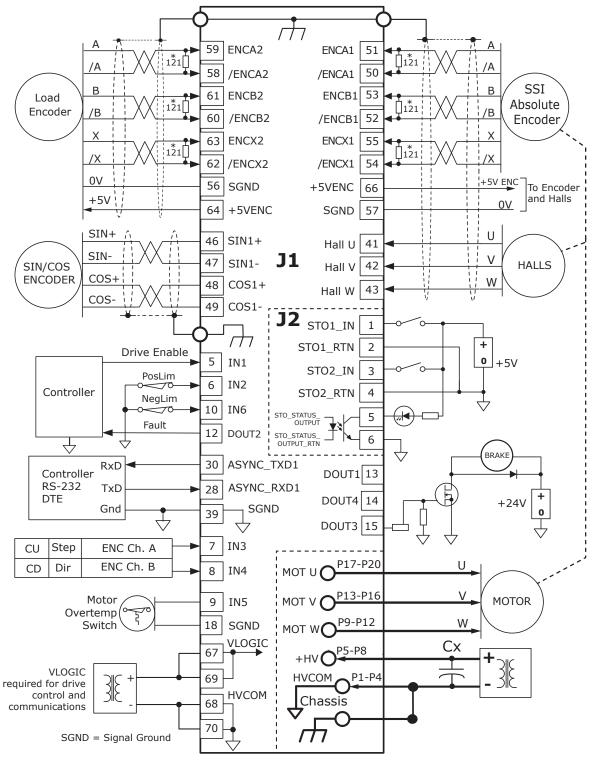

DESCRIPTION

VLOGIC is required for the operation of the drive. It powers the internal logic and the control circuits. Encoder +5V is derived from VLOGIC.

When the STO feature is used, VLOGIC must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

J1 VLOGIC

Name	Pin		Name
VLOGIC	67	68	HVCOM
VLOGIC	69	70	HVCOM

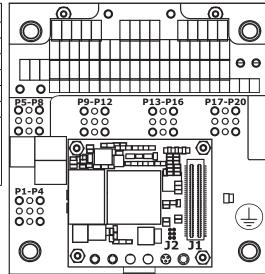

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. If common to HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

PCF NPP-HP

NPP-HP TYPICAL CONNECTIONS

The following diagram shows the NPP-HP connections and identifies the pins and signals.


NPP-HP Connections Diagram

PC BOARD CONNECTIONS

The following diagram shows the topside view of the pins and signals pointed downwards towards the PC user mounting board.

P1~P20		
Signal	Pins	
HVCOM	P1~P4	
+HV	P5~P8	
MOTW	P9~P12	
MOTV	P13~P16	
MOTU	P17~P20	
Chassis	*	
*Note: The mounting holes are connected to one another and to Chassis Ground. The mounting hole marked with the PE symbol is the connection point for the protective earth conductor.		

NPP-HP Module Board Connections Diagram

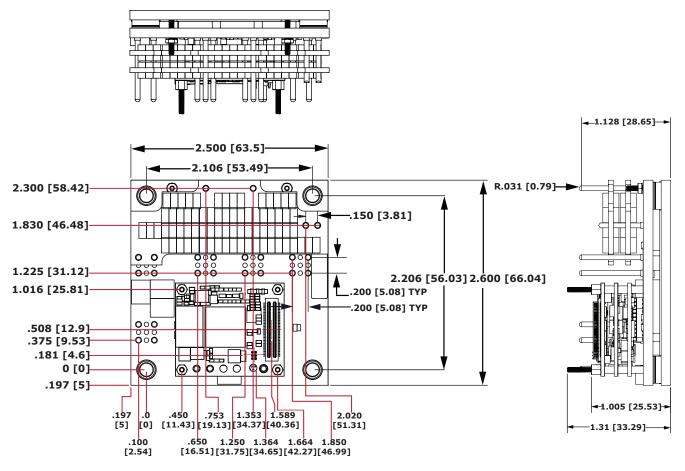
]2	2 5	то

Name	Pin		Name		
STO1_RTN	2	1	STO_1		
STO2_RTN	4	3	STO_2		
STO_STATUS_OUTPUT_RTN	6	5	STO_STATUS_OUTPUT		

Signal	Pin		Signal
REFIN1-	1	2	REFIN1+
SGND	3	4	SGND
[ENABLE] IN1	5	6	IN2
IN3	7	8	IN4
IN5	9	10	IN6
IN7	11	12	DOUT2
DOUT1	13	14	DOUT4
DOUT3	15	16	DOUT6
DOUT5	17	18	SGND
N.C.	19	20	N.C.
N.C.	21	22	N.C.
N.C.	23	24	N.C.
N.C.	25	26	N.C.
N.C.	27	28	ASYNC_RXD1
N.C.	29	30	ASYNC_TXD1
CAN_RX	31	32	ASYNC_RXD2
CAN_TX	33	34	ASYNC_TXD2
HSTL_0P	35	36	HSTL_1P
HSTL_0N	37	38	HSTL_1N
SGND	39	40	SGND
HALLU	41	42	HALLV
HALLW	43	44	SGND
SGND	45	46	SIN1+
SIN1-	47	48	COS1+
COS1-	49	50	/ENCA1
ENCA1	51	52	/ENCB1
ENCB1	53	54	/ENCX1
ENCX1	55	56	SGND
SGND	57	58	/ENCA2
ENCA2	59	60	/ENCB2
ENCB2	61	62	/ENCX2
ENCX2	63	64	+5VENC
N.C.	65	66	+5VENC
VLOGIC	67	68	HVCOM
VLOGIC	69	70	НУСОМ

*NOTE: In the Signal column, the asterisk indicates do not connect to these pins. Consult the factory for AN146: IDC Inter-Drive Communication.

Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S070-022G3R02	Header, 70 pos, 0.5 mm pitch	1
J2	STO	WCON	2521-203MG3CUNR1	Header, 6 pos, 1 mm pitch	1
Re Ac W	fer to the follo	wing vendor to co ics, Inc. 2 081-2522-US		e purchase of reels for those compone -added partner Action Electronics.	nts.



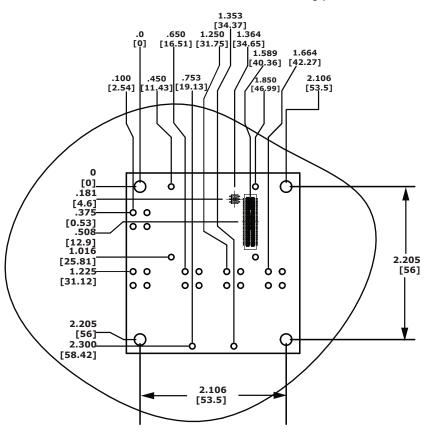
DIMENSIONS

NPP-HP MODULE

The following diagram shows the NPP-HP module dimensions.

The dimensions are measured in inches [in] and millimeters [mm].

NPP-HP Module Dimensions Diagram



DIMENSIONS

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the topside view of the user mounting PC board for the drive. The STO (J2) connector is mounted on the underside of the PC board. The topside view shows the clearance holes for the STO connector mating pins.

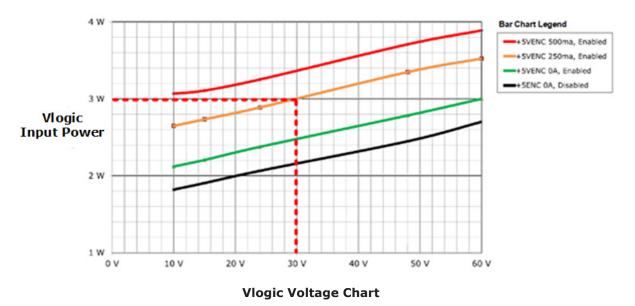
PC User Mounting Board Dimensions (Bottom View)

Notes:

- 1. The J2 Connector is not shown in the above diagram, because it is located on the far side of the PCB. The CL dimension for the connector body is shown with the 6 access holes used for the header pins so that they can pass through the customer board. Then, mate to the connector.
- 2. To determine the copper width and thickness for P1~P20 signals, refer to specification IPC-2221.
- (Association Connecting Electronic Industries, https://www.ipc.org)
- 3. For maximum noise suppression and immunity, connect the standoffs to etches on the PC board that connects to the chassis.
- 4. The Nano Plus High Power Module drives do not emit noise above 70 dB(A) when they are mounted and operating.

THERMALS: PWM OUTPUTS DISSIPATION

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive. For example in the chart, the red dotted line show a power dissipation of 130 W at a continuous current of 119 Adc and +HV = 90 VDC.



Power Stage Dissipation Chart

VLOGIC/VOLTAGE

In the chart below, it shows the power dissipation in the Vlogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive.

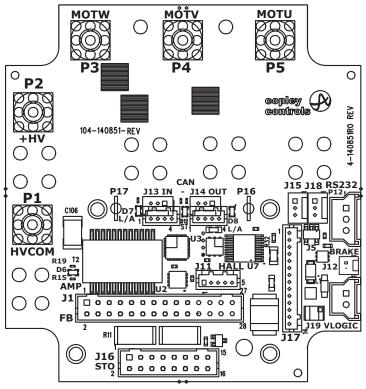
In the chart, the dotted lines show a dissipation of 3.0 W. at Vlogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

controls Nano Plus-HP CANopen PCF NPP-HP

NPP-HP-Z

copley 🧉

The NPP-HP-Z Board diagram shows the connections and board layout. The tables identify the signals and pins for each connector.


MODELS

NPP-090-80-C-Z
NPP-090-140-C-Z

I	P1-P5
Signal	Pin
HVCOM	P1
+HV	P2
MOTW	Р3
MOTV	P4
MOTU	P5

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

NPP-HP-Z Connections Diagram

P16	SHIELD	P17 SHIELD

Signal	Pin	Signal	Pin
SHLD	1	SHLD	1

J13 CAN		J14	I CAN
IN	Pin	OUT	Pin
CANH	1	CANH	1
CANL	2	CANL	2
SGND	3	SGND	3

P12 RS-232

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

J19 VLOGIC

Signal	Pin
VLOGIC	2
HVCOM	1

J17 ENCODER 1	
---------------	--

Signal	Pin
+5VENC	1
SGND	2
/ENCA1	3
ENCA1	4
/ENCB1	5
ENCB1	6
/ENCX1	7
ENCX1	8
IN5	9
SGND	10
COS1+	11
COS1-	12
SIN1+	13
SIN1-	14

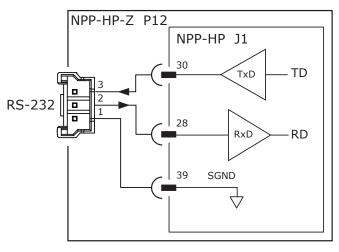
J1 I/O				
Signal	Р	in	Signal	
/ENCA2	2	1	Chassis	
ENCA2	4	3	SGND	
IN1_24V	6	5	+5VENC	
IN2_24V	8	7	+5VENC	
IN3	10	9	/ENCB2	
IN4	12	11	ENCB2	
IN5 (MOTEMP)	14	13	SGND	
IN6 (ENC_FAULT)	16	15	/ENCX2	
IN7 (SLI_MISO)	18	17	ENCX2	
SGND	20	19	REFIN1-	
DOUT1	22	21	REFIN1+	
DOUT2	24	23	SGND	
DOUT3 (BRAKE OFF)	26	25	DOUT6 (SLI_EN1)	
DOUT4 (SLI_MOSI)	28	27	DOUT5 (SLI_CLK)	

- 11	6	STO

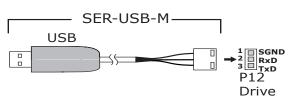
Signal	P	in	Signal
STO1_24V_IN	2	1	STO1_RTN
STO_1	4	3	STO1_RTN
N.C.	6	5	N.C.
STO2_24V_IN	8	7	STO2_RTN
STO_2	10	9	STO2_RTN
N.C.	12	11	N.C.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_ OUTPUT

PCF NPP-HP

NPP-HP-Z: P12 RS-232


RS-232 CONNECTION

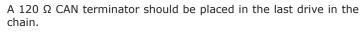
The RS-232 port is used to configure the drive for stand-alone applications, or it is used for the configuration before it is installed into a CAN network.

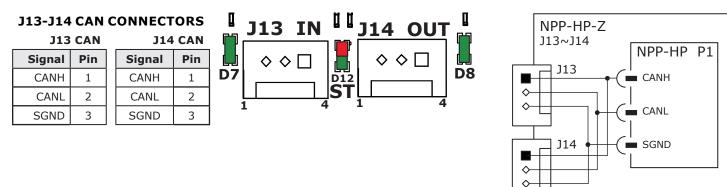

P12	RS-232
-----	--------

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

The Copley software communicates with the drive over this link. It is then used for the complete drive setup. The CAN Device ID is set via RS-232 along with other operating functions.

RJ11 Diagram


The RJ-11 socket (6P6C) is compatible with the existing serialdata cables. It can be done using an RJ-11 socket (6P6C) wired with a compatible serial-data cable as shown in the RJ11 Diagram. Molex: 42410-6170 Modular Jack, 6 terminals, size 6


Copley offers a SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NPP-HP-Z serial port.

CANOPEN CONNECTIONS

CANOPEN CONNECTORS

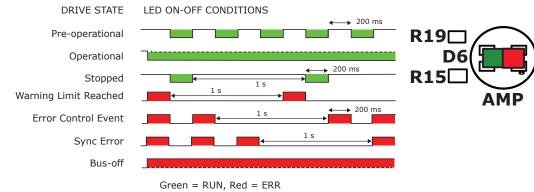
Dual connectors are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface.

NPP-HP-Z: DRIVE STATUS LED (AMP)

DRIVE STATUS LED (AMP)

A bi-color LED "AMP" displays the state of the drive. Colors do not alternate and can be solid ON or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table is shown.

LED	Condition Description
Red/Blinking	Latching fault. Operation can not resume until the drive is Reset.
Red/Solid	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by the limit switch.
Green/Solid	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.


LATCHING FAULTS

Default	Optional (Programmable)	
Short Circuit (Internal or External)	Over-voltage	
Drive Over-temperature	Under-voltage	
Motor Over-temperature	Motor Phasing Error	
Feedback Error	Command Input Lost	
Following Error	Motor Wiring Disconnected	
	Over Current (Latched)	

CAN STATUS LED

In the following LED ON-OFF Conditions diagram, the GREEN LED "RUN" shows the state of the CAN state machine.

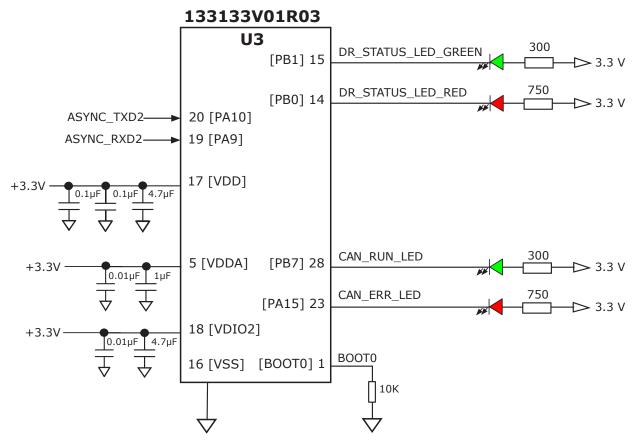
The RED <code>LED</code> <code>"ERR"</code> shows the status of the CAN physical layer and errors due to missing messages.

LED On-Off Conditions Diagram

Nano Plus-HP CANopen

NPP-HP-Z: DRIVE AND NETWORK STATUS LEDS

The microprocessor chip uses the serial port with ASYNC_TXD2 and ASYNC_RXD2 to drive LEDs.


• DR_STATUS_LED_X signals drive the AMP STATUS LED.

copley

controls

• CAN_XXX_LED show the network status of the drive communication.

In the following diagram, it shows the NPP-HP-Z drive and the network status LEDs.

NPP-HP-Z Drive and Network Status LEDs Diagram

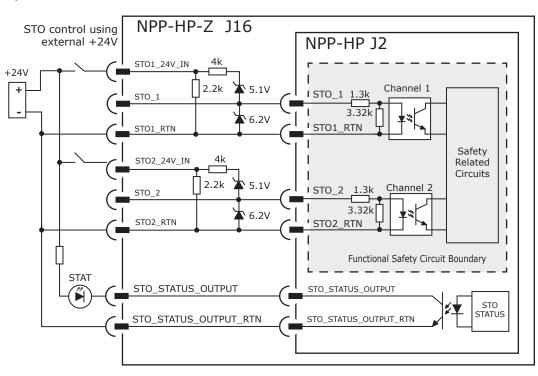
Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description	
133133V01R03	Arrow Electronics	Pre-programmed uC for Drive and Network Status LEDs.	
NOTE: For information on the STM32F042G4U6TR electrical, pinout and package details, refer to the product: STM32F042G4U6TR Datasheet. The datasheet is posted on the ST Microelectronics website: https://www.st.com.			



NPP-HP-Z: J16 SAFE TORQUE OFF [STO]

DESCRIPTION

In the following diagram, it shows the use of an external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive.

NPP-HP-Z J16 STO Diagram

Note: In the diagram, the +24V shown can be driven from the VLOGIC power supply. The STOx_24V_IN circuits can tolerate the +60V limit of the VLOGIC input. The STO_x maximum voltage limits are +7.0 Vdc.

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	1	1	1

In the STAT-OUT Operation table, the following describes the values. • STO1 & STO2 rows, 1 = 24V. It is applied between the IN-24V and RTN. 0 = open-circuit.

• In the STAT row, 1 = the optocoupler is ON,

0 = the optocoupler is OFF.

• STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

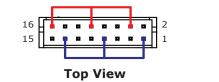
J16 STO

Signal	Pin		Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO_1
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO_2
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5V

STO OPERATION

STO Input Voltage	STO State	
STO1_24V_IN AND STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc		
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5.0 Vdc		
STO_1 OR STO_2 \leq 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 Open		

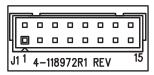
Note: In the above table, the voltages are referenced between a STO_x and a STOx_RTN in J16 For example, $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$


copley O controls Nano Plus-HP CANopen

PCF NPP-HP

NPP-HP-Z: J16 SAFE TORQUE OFF (STO) BYPASS

The Bypassing function is used when the user does not require the STO function. The STO-Bypass has jumpers that use the +5VENC to energize the STO inputs.


This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The following diagrams show the STO-Bypass top and bottom views.

○ ○ ○ ○ ○ ○ □ 1 104-118972-01 REV□ **Top View**

00000000

Bottom View

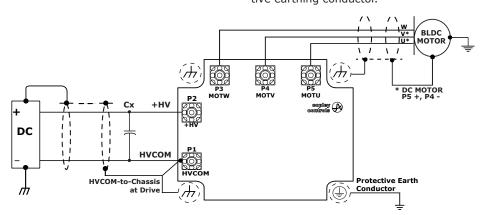
NPP-HP-Z: +HV & MOTOR CONNECTIONS

+HV

The +HV power supply outputs connect to terminal P2. HVCOM connects to terminal P1. An overall cable shield for the +HV/HVCOM pair is necessary to meet EMC requirements. As shown, this shield connects to the chassis ground at the power supply end and to chassis ground at the drive end. To minimize electrical noise, Copley recommends that the user connect the negative (-, HVCOM) terminal of the power supply with a short, direct path to the drive chassis ground located close to the drive.

MOTOR

P5, P4 and P3 are used for the motor windings U, V and W respectively. Motor cables typically have one wire for each of the three phases and a fourth wire for connecting the motor housing to protective earth. The protective earth conductor wire color is commonly GREEN with a YELLOW stripe. This user must connect this protective earthing conductor to a suitable protective earth connection point which is most often found on the frame of the machine into which the drive and motor are mounted


The Nano Plus High Power drives are Protective Class I equipment relating to protec-

Protective Earth

equipment relating to protection against electric shock. Accordingly, the drives have both basic insulation between circuits and accessible conductive parts and offer a method of connecting a protective earthing conductor to prevent accessible conductive parts (the heatplate for example) from becoming 'hazardous live' in the event of a failure of the basic insulation. The PE symbol appears next to one of the four corner mounting holes on the module and identifies it as the connection point for the protective earthing conductor.

Chassis Ground Connections

The mounting holes other than the one specified as the Protective Earth connection point, are suitable connection points for connecting cable shields to Chassis Ground and for connecting the negative (-, HVCOM) power supply terminal to Chassis Ground.

NPP-HP-Z +HV & Motor Connections Diagram

Pin	Signal	Pin	Signal	Description	Data
P1	HVCOM	P3	Motor W	Recommended Wire	2~4 AWG, 600 V, shielded cable required for CE compliance.
P2	+HV	P4	Motor V	Recommended	#10 Ring Terminal, 4AWG Wire, Insulated
		P5	Motor U		

copley (Nano Plus-HP CANopen controls

NPP-HP-Z: J12 BRAKE

J12 BRAKE:

The EZ board has components that can actuate a brake using pulse-width modulation, controlled by DOUT3.

SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Pin	Signal	
2	VLOGIC	
1	BRAKE	

Copley software default setting for Brake Output [DOUT3] is "Custom Brake Output."

"Active = Brake is holding motor shaft (i.e. the *Brake is Active*). Motor cannot move. No current flows in coil of brake. Copley software I/O Line States shows [DOUT3] as LO.

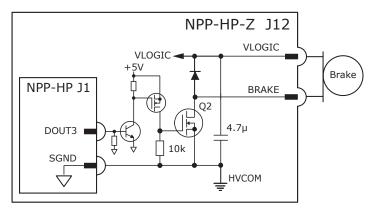
BRK Output voltage is HI (24V), MOSFET Q2 is OFF. Servo drive output current is zero. Servo drive is disabled, PWM outputs are OFF.

Inactive = Brake is not holding motor shaft

(i.e. the Brake is NOT-Active).

Motor can move. Current flows in coil of brake. Copley software I/O Line States shows [DOUT3] as HI. BRK output voltage is LO (~0V), MOSFET Q2 is ON. Servo drive is enabled, PWM outputs are ON. Servo drive output current is flowing.

NPP-HP-Z: J19 VLOGIC


J19 VLOGIC:

The J19 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by the power supplies with the transformer isolation from the mains, PELV or SELV ratings, and provide a maximum output voltage of 60 Vdc.

The behavior is based on the following parameters, which can be set using the Copley software.

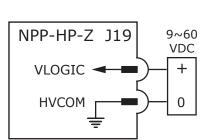
PCF NPP-HP

Parameter	Description
Initial Voltage (V)	Applied to the brake by duty cycling OUT3 to the brake's rated voltage.
Time at Inital Voltage (ms)	Sufficient time to open the brake after which, it switches to Holding Voltage.
Holding Voltage (V)	A lower duty-cycled voltage that is adequate to hold the brake open without overheating.
PWM Frequency (Hz)	16 KHz is the default and it is programmable.

If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Input Dowor	Тур	4 W
Input Power	Max	8 W

NOTE: The following are the input power values:


- Typical input power is no load on encoder +5V. Maximum input power is two encoders @ 250
- mA each, and +5V at maximum.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

Vlogic +9~60. 24V power is recommended. If using a 24V Brake, 24V is required. If common to HV do not exceed 60V, use REGEN protection and diode isolation from HV.

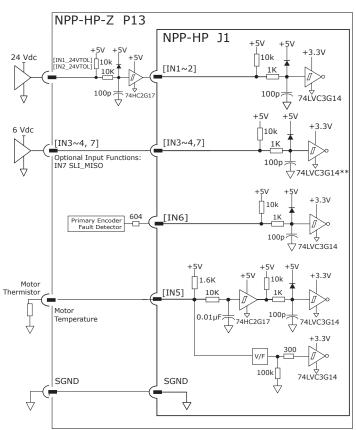
J19 VLOGIC Pin Signal VLOGIC 2 1 **HVCOM**

NPP-HP-Z: J1 INPUTS & OUTPUTS

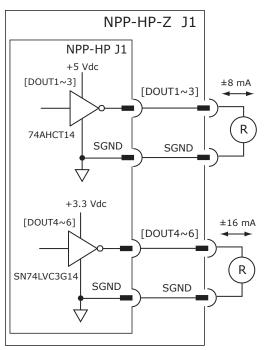
- J1 has the following inputs and outputs:
- Digital Inputs 1~7
- Digital Outputs 1~6
- Analog Differential Input
- Secondary Quad A/B/X Encoder Input

J1 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3	10
IN4	12
IN5 ¹	14
IN6	16
IN7 ²	18
+5 V	5,7
SGND	3,13,20,23


Notes:

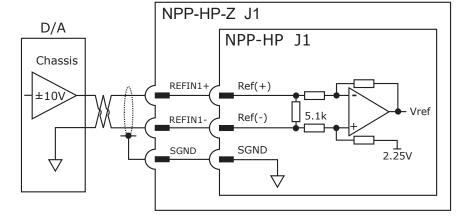
- 1) For information on IN5, refer to page 9:Motor Overtemp Input IN5.
- 2) The gate on IN7 is 74AHCT14BQ powered with 5.0 Vdc.


J1 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	22
DOUT2 [OUT2]	24
DOUT3 [BRAKE_OFF]	26
DOUT4 [SLI_MOSI]	28
DOUT5 [SLI_CLK]	27
DOUT6 [SLI_ENI]	25
SGND	3,13,20,23

- The inputs and outputs are described as follows:
- IN1~2 are 24V compatible.
- IN3,4,5,7 are 6V tolerant.
- IN6 is dedicated to primary encoder fault detection.

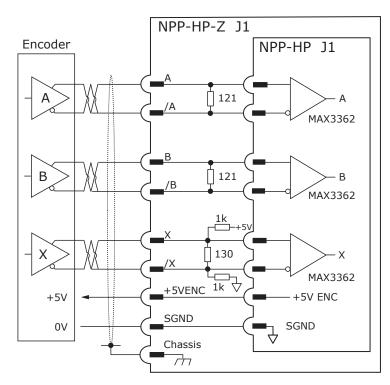
NPP-HP-Z J1 Connections Diagram


NPP-HP-Z: J1 ANALOG INPUT

As a reference input, the J1 analog input takes Position/Velocity/ Torque commands from a controller. If it is not used as a command input, it can be used as the general-purpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

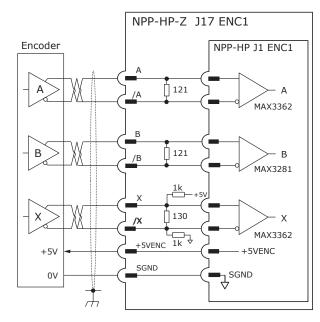

Signal	J1 Pins
Ref(+)	21
Ref(-)	19

NPP-HP-Z: J1 SECONDARY ENCODER

In the following diagram, it shows the NPP-HP-Z J1 secondary encoder connections. The table identifies the signal and pins for the J1 ENC2 inputs.

Use the secondary encoder when the load is not connected directly to the motor.

J1 ENC2 INPUTS


Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	11
/ENCB2 [/B]	9
ENCX2 [X]	17
/ENCX2 [/X]	15
+5VENC	5,7
SGND	3,13,20,23
Chassis	1

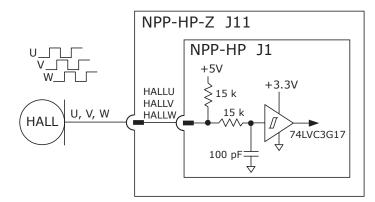
NPP-HP-Z: J7 PRIMARY ENCODER

ENC1 is the Motor encoder. It is used in the single-encoder applications.

In the dual-encoder applications, it can be assigned as Primary or Secondary in the Copley software.

J17 ENC1 INPUTS

Signal	Pins
ENCA1 [A]	4
/ENCA1 [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1 [X]	8
/ENCX1 [/X]	7
OVERTEMP_IN [IN5]	9
+5VENC	1
SGND	2,10

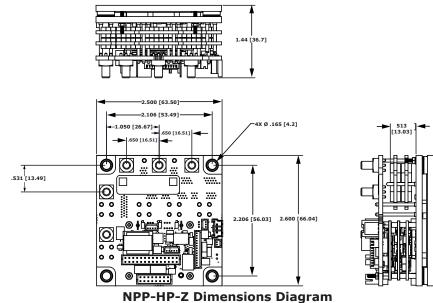

NPP-HP-Z: J11 HALLS

In the NPP-HP-Z, J11 diagram, it shows the Halls connections.

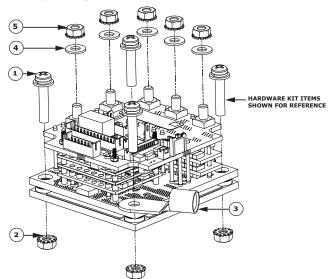
J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

The table identifies the signal and pins for the J11 Hall Inputs.



copley controls Nano Plus-HP CANopen


NPP-HP-Z: MECHANICALS

In the NPP-HP-Z Dimensions diagram, it shows the dimensions for the NPP-HP-Z module components.

In the NPP-HP-Z Components Assembly diagram, it shows the location of the hardware parts on the drive. Use the screws to connect the nuts and washers to secure the parts together.

For information on the hardware kit components, type, size, manufacturer, part number and description, refer to the tables below.

NPP-HP-Z Mounting Assembly Diagram

The following table lists the item, quantity, description and manufacturing part numbers shipped with the drive.

N-HP-Z-MK: Nano and Nano Plus HP EZ Customer Assembly Hardware Kit

#	Item	Qty	Mfar	Part Number	Description
1	Screw	4	Arnold Industries	1923NK	M4 SEMS screw, 20mm long, Phillips Pan Head
2	Nut	4	Arnold Industries	BN1364M4NK	M4 KEP Nut
3	Terminal Lug	6	Panduit Corporation	P4-10R-T	#10 Ring Terminal, 4AWG Wire, Non-Insulated

N-HP-Z-MK: Nano and Nano Plus HP EZ Customer Assembly Hardware Kit

#	Item	Qty	Mfgr	Part Number	Description
4	Washer	5	Bossard International	1215930	M4 Flat Washer, Brass Nickel
5	Nut	5	Arnold Industries	BN1364M4NK	M4 KEP Nut

NOTE: The items (4 & 5-nuts and washers) are assembled with the product. Use the assembly items 4 & 5 for the customer wire attachment connecting to the Power-In and Motor-Out terminals. If the customer requires additional parts, refer to the information for items 4 & 5.

ORDERING GUIDE

NPP-HP

Part Number	Description
NPP-090-80-C*	Nano ^{Plus} High Power Module CANopen NPP-HP servo drive, 80/80 A, 90 Vdc
NPP-090-80-C-Z	NanoPlus High Power Module soldered to EZ board CANopen, NPP-HP-Z servo drive, 80/80 A, 90 Vdc
NPP-090-140-C*	Nano ^{Plus} High Power Module CANopen NPP-HP servo drive, 140/140 A, 90 Vdc
NPP-090-140-C-Z	Nano ^{Plus} High Power Module soldered to EZ board CANopen, NPP-HP-Z servo drive, 140/140 A, 90 Vdc

*Note: The NPP-HP units must be soldered directly to a mounting PCBA.

ACCESSORIES FOR NPP-HP

Part Number	Description
N-HP-MK	Hardware Kit, Nano and Nano Plus HP MOD Customer Assembly

ACCESSORIES FOR NPP-HP-Z

Part Number	Description
NP-Z-CK	Connector Kit for Nano Plus HP
N-HP-Z-MK	Hardware Kit, Nano and Nano Plus HP EZ Customer Assembly
SER-USB-M	USB to 3-Pin Molex Adapter Cable

CONNECTOR KIT FOR NANO PLUS HP

	Qty	Ref	Name	Description	MFGR Part Number
NP-Z-CK Connector Kit	1	J12	Brake	CONN WIRE-MT HSG SKT 1X2P 1.25MM LKG NYL BEIGE	Hirose: DF13-2S-1.25C
	2	J13, J14	CAN	CONN WIRE-MT HSG SKT 1X3P 1.25MM LKG NYL BEIGE	Hirose: DF13-3S-1.25C
	2	J9, J10	EtherCAT	CONN WIRE-MT HSG SKT 1X4P 1.25MM LKG NYL BEIGE	Hirose: DF13-4S-1.25C
	1	J11	Halls	CONN WIRE-MT HSG SKT 1X5P 1.25MM LKG NYL BEIGE	Hirose: DF13-5S-1.25C
	1	J17	Primary Feedback	CONN WIRE-MT HSG SKT 1X14P 1.25MM LKG NYL BEIGE	Hirose: DF13-14S-1.25C
	29	J9,J10,J11, J12,J13, J14,J17	DF13 pins	CONN CONTC SKT CRMP 30-26GA 1MM MAX INSUL DIA AU	Hirose: DF13-2630SCFA
	1	J16	STO	CONN WIRE-MT HSG RCPT 2X8P 2X2MM LKG NYL BLK	Hirose: DF11-16DS-2C
	1	J1	Secondary Feed- back, I/O	CONN WIRE-MT HSG RCPT 2X14P 2X2MM LKG NYL BLK	Hirose: DF11-28DS-2C
	44		DF11 pins	CONN CONTC SKT CRMP 28-24GA 1.45MM MAX INSUL DIA AU	Hirose: DF11-2428SCFA(04)
	1	J19	Vlogic	CONN WIRE-MT HSG RCPT 1X2P 2MM LKG POLYEST NAT	Molex: 35507-0200
	1	P12	RS-232	CONN WIRE-MT HSG RCPT 1X3P 2MM LKG POLYEST NAT	Molex: 35507-0300
	2	P16, P17	Cable Shields	FASTON RCPT .110X.020 26-22GA UNINSUL POSI- TIVE-LOCK PHBRZ/SN	TE: 353249-2
	4		DF13 Wires, Black	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H4BBG-10112-B6
	17		DF13 Wires, White	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H4BBG-10112-W6
	20		DF11 Wires, White	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H3BBG-10112-W6
	3		DF11 Wires, Red	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H3BBG-10112-R6
	3		DF13 Wires, Red	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H4BBG-10112-R6
	1		J19, HVCOM Wire, Black	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD BLK SN 12IN	Molex:0502128000-12-B4
	1		J19, +VLOGIC Wire, Red	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD RED SN 12IN	Molex:0502128000-12-R4
	3		DF11 Wires, Black	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H3BBG-10112-B6
	1		DF13 Brake Wire, Blue	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLU AU 12IN	Hirose:H4BBG-10112-L6
	1	İ	STO-Bypass PCB	BD ASSY, STO BYPASS BOARD	Copley: 104-118972-01

REVISION HISTORY

16-140918 Document Revision History

Revision	Date	Remarks
00	July 15, 2025	Initial Release for Production

Trademarks: CANopen® is a registered trademark of CAN in Automation, Panasonic[™] is a trademark of Panasonic Corp., SAE J1939[™] is trademark of SAE Int., Samtec is a trademark of Samtec Inc., Sanyo Denki[™] is a trademark of Sanyo Denki Co., Ltd., Tamagawa[™] is a trademark of Tamagawa Seiki Co., Ltd., ST Microelectronics[™] is a trademark of ST Microelectronics, Inc.